71 research outputs found

    Primordial power spectrum: a complete analysis with the WMAP nine-year data

    Full text link
    We have improved further the error sensitive Richardson-Lucy deconvolution algorithm making it applicable directly on the un-binned measured angular power spectrum of Cosmic Microwave Background observations to reconstruct the form of the primordial power spectrum. This improvement makes the application of the method significantly more straight forward by removing some intermediate stages of analysis allowing a reconstruction of the primordial spectrum with higher efficiency and precision and with lower computational expenses. Applying the modified algorithm we fit the WMAP 9 year data using the optimized reconstructed form of the primordial spectrum with more than 300 improvement in \chi^2 with respect to the best fit power-law. This is clearly beyond the reach of other alternative approaches and reflects the efficiency of the proposed method in the reconstruction process and allow us to look for any possible feature in the primordial spectrum projected in the CMB data. Though the proposed method allow us to look at various possibilities for the form of the primordial spectrum, all having good fit to the data, proper error-analysis is needed to test for consistency of theoretical models since, along with possible physical artefacts, most of the features in the reconstructed spectrum might be arising from fitting noises in the CMB data. Reconstructed error-band for the form of the primordial spectrum using many realizations of the data, all bootstrapped and based on WMAP 9 year data, shows proper consistency of power-law form of the primordial spectrum with the WMAP 9 data at all wave numbers. Including WMAP polarization data in to the analysis have not improved much our results due to its low quality but we expect Planck data will allow us to make a full analysis on CMB observations on both temperature and polarization separately and in combination.Comment: 19 pages, 5 figures, discussions extended, results unchanged, matches the final version published in JCAP. Note: JCAP published version contains minor typesetting errors (introduced by JCAP at the proof stage) in the plot label

    Primordial power spectrum from Planck

    Full text link
    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near 750850\ell\sim750-850 represents the most prominent feature in the data. Feature near 18002000\ell\sim1800-2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ\sigma C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of 2.5%\sim2.5\%. In this context low-\ell and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.Comment: 30 pages, 11 figures, 1 table, matches published version in JCA

    Sharp inflaton potentials and bi-spectra: Effects of smoothening the discontinuity

    Full text link
    Sharp shapes in the inflaton potentials often lead to short departures from slow roll which, in turn, result in deviations from scale invariance in the scalar power spectrum. Typically, in such situations, the scalar power spectrum exhibits a burst of features associated with modes that leave the Hubble radius either immediately before or during the epoch of fast roll. Moreover, one also finds that the power spectrum turns scale invariant at smaller scales corresponding to modes that leave the Hubble radius at later stages, when slow roll has been restored. In other words, the imprints of brief departures from slow roll, arising out of sharp shapes in the inflaton potential, are usually of a finite width in the scalar power spectrum. Intuitively, one may imagine that the scalar bi-spectrum too may exhibit a similar behavior, i.e. a restoration of scale invariance at small scales, when slow roll has been reestablished. However, in the case of the Starobinsky model (viz. the model described by a linear inflaton potential with a sudden change in its slope) involving the canonical scalar field, it has been found that, a rather sharp, though short, departure from slow roll can leave a lasting and significant imprint on the bi-spectrum. The bi-spectrum in this case is found to grow linearly with the wavenumber at small scales, a behavior which is clearly unphysical. In this work, we study the effects of smoothening the discontinuity in the Starobinsky model on the scalar bi-spectrum. Focusing on the equilateral limit, we analytically show that, for smoother potentials, the bi-spectrum indeed turns scale invariant at suitably large wavenumbers. We also confirm the analytical results numerically using our newly developed code BINGO. We conclude with a few comments on certain related points.Comment: v1: 28 pages, 4 figures; v2: 29 pages, 4 figures, Version to appear in JCA
    corecore