3 research outputs found

    Changes in tree community structure in defaunated forests are not driven only by dispersal limitation

    Get PDF
    Bushmeat hunting has reduced population sizes of large frugivorous vertebrates throughout the tropics, thereby reducing the dispersal of seeds. This is believed to affect tree population dynamics, and therefore community composition, because the seed dispersal of large-seeded trees depends upon large-bodied vertebrates.We report on a long-running study of the effect of defaunation on a tropical tree community. In three censuses over 11 years, we compared sapling recruitment between a hunted and a nonhunted site, which are nearby and comparable to one another, to determine the extent to which species composition has changed through time following defaunation. We expected to find a reduced abundance of tree species that rely on large frugivores for dispersal at the hunted site and altered community structure as a consequence.Although community composition at the hunted site diverged from that at the nonhunted site, the changes were independent of dispersal syndrome, with no trend toward a decline in species that are dispersed by large, hunted vertebrates. Moreover, the loss of large-bodied dispersers did not generate the changes in tree community composition that we hypothesized. Some species presumed to rely on large-bodied frugivores for dispersal are effectively recruiting despite the absence of their dispersers.Synthesis: The presumption that forests depleted of large-bodied dispersers will experience rapid, directional compositional change is not fully supported by our results. Altered species composition in the sapling layer at the hunted site, however, indicates that defaunation may be connected with changes to the tree community, but that the nature of these changes is not unidirectional as previously assumed. It remains difficult to predict how defaunation will affect tree community composition without a deeper understanding of the driving mechanisms at play

    Changes in tree community structure in defaunated forests are not driven only by dispersal limitation

    Get PDF
    1. Bushmeat hunting has reduced population sizes of large frugivorous vertebrates throughout the tropics, thereby reducing the dispersal of seeds. This is believed to affect tree population dynamics, and therefore community composition, because the seed dispersal of largeā€seeded trees depends upon largeā€bodied vertebrates. 2. We report on a longā€running study of the effect of defaunation on a tropical tree community. In three censuses over 11 years, we compared sapling recruitment between a hunted and a nonhunted site, which are nearby and comparable to one another, to determine the extent to which species composition has changed through time following defaunation. We expected to find a reduced abundance of tree species that rely on large frugivores for dispersal at the hunted site and altered community structure as a consequence. 3. Although community composition at the hunted site diverged from that at the nonhunted site, the changes were independent of dispersal syndrome, with no trend toward a decline in species that are dispersed by large, hunted vertebrates. Moreover, the loss of largeā€bodied dispersers did not generate the changes in tree community composition that we hypothesized. Some species presumed to rely on largeā€bodied frugivores for dispersal are effectively recruiting despite the absence of their dispersers. 4. Synthesis: The presumption that forests depleted of largeā€bodied dispersers will experience rapid, directional compositional change is not fully supported by our results. Altered species composition in the sapling layer at the hunted site, however, indicates that defaunation may be connected with changes to the tree community, but that the nature of these changes is not unidirectional as previously assumed. It remains difficult to predict how defaunation will affect tree community composition without a deeper understanding of the driving mechanisms at play

    Negative density dependence in the mortality and growth of tropical tree seedlings is strong, and primarily caused by fungal pathogens

    Get PDF
    1. Natural enemies have been implicated as agents of negative density dependence (NDD) in tropical forests, but their relative contributions to NDD, and thus to the maintenance of diversity, are largely unknown. 2. We monitored the rates of survival and relative growth rates on seedlings for 10 years in tropical moist forest in Manu National Park, Peru. We then experimentally manipulated the plots to exclude fungal pathogens, insects, small mammals and large mammals for an additional 31 months to assess the influence of these natural enemies on densityā€dependent interactions among tropical seedlings. 3. Fungal pathogens made the most important contribution to NDD. The application of fungicide led to lower mortality rates, faster growth rates and decreased species diversity. Other taxa of natural enemies had at most minor effects on seedling performance. 4. Synthesis. We conclude that fungal pathogens are the strongest contributors to the widely observed NDD that occurs among seedlings. Moreover, the presence of fungal pathogens augments the species diversity of seedlings, indicating their critical contribution to the maintenance of species coexistence and the structure of tropical tree communities
    corecore