17 research outputs found

    Genetic predisposition to metabolically unfavourable adiposity and prostate cancer risk:A Mendelian randomization analysis

    Get PDF
    BACKGROUND The associations of adiposity with aggressive prostate cancer risk are unclear. Using two-sample Mendelian randomization, we assessed the association of metabolically unfavourable adiposity (UFA), favourable adiposity (FA) and for comparison body mass index (BMI), with prostate cancer, including aggressive prostate cancer. METHODS We examined the association of these genetically predicted adiposity-related traits with risk of prostate cancer overall, aggressive and early onset disease using outcome summary statistics from the PRACTICAL consortium (including 15,167 aggressive cases). RESULTS In inverse-variance weighted models, there was little evidence that genetically predicted one standard deviation higher UFA, FA and BMI were associated with aggressive prostate cancer [OR: 0.85 (95% CI:0.61-1.19), 0.80 (0.53-1.23) and 0.97 (0.88-1.08), respectively]; these associations were largely consistent in sensitivity analyses accounting for horizontal pleiotropy. There was no strong evidence that genetically determined UFA, FA or BMI were associated with overall prostate cancer or early age of onset prostate cancer. CONCLUSIONS We did not find differences in the associations of UFA and FA with prostate cancer risk, which suggest that adiposity is unlikely to influence prostate cancer via the metabolic factors assessed; however, these did not cover some aspects related to metabolic health that may link obesity with aggressive prostate cancer, which should be explored in future studies

    Identifying molecular mediators of the relationship between body mass index and endometrial cancer risk:a Mendelian randomization analysis

    Get PDF
    Endometrial cancer is the most common gynaecological cancer in high-income countries. Elevated body mass index (BMI) is an established modifiable risk factor for this condition and is estimated to confer a larger effect on endometrial cancer risk than any other cancer site. However, the molecular mechanisms underpinning this association remain unclear. We used Mendelian randomization (MR) to evaluate the causal role of 14 molecular risk factors (hormonal, metabolic and inflammatory markers) in endometrial cancer risk. We then evaluated and quantified the potential mediating role of these molecular traits in the relationship between BMI and endometrial cancer using multivariable MR. Methods Genetic instruments to proxy 14 molecular risk factors and BMI were constructed by identifying single-nucleotide polymorphisms (SNPs) reliably associated (P < 5.0 × 10−8) with each respective risk factor in previous genome-wide association studies (GWAS). Summary statistics for the association of these SNPs with overall and subtype-specific endometrial cancer risk (12,906 cases and 108,979 controls) were obtained from a GWAS meta-analysis of the Endometrial Cancer Association Consortium (ECAC), Epidemiology of Endometrial Cancer Consortium (E2C2) and UK Biobank. SNPs were combined into multi-allelic models and odds ratios (ORs) and 95% confidence intervals (95% CIs) were generated using inverse-variance weighted random-effects models. The mediating roles of the molecular risk factors in the relationship between BMI and endometrial cancer were then estimated using multivariable MR

    Impact of weight loss on cancer-related proteins in serum: results from a cluster randomised controlled trial of individuals with type 2 diabetes

    Get PDF
    Background Type 2 diabetes is associated with higher risk of several cancer types. However, the biological intermediates driving this relationship are not fully understood. As novel interventions for treating and managing type 2 diabetes become increasingly available, whether they also disrupt the pathways leading to increased cancer risk is currently unknown. We investigated the effect of a type 2 diabetes intervention, in the form of intentional weight loss, on circulating proteins associated with cancer risk to gain insight into potential mechanisms linking type 2 diabetes and adiposity with cancer development. Methods Fasting serum samples from participants with diabetes enrolled in the Diabetes Remission Clinical Trial (DiRECT) receiving the Counterweight-Plus weight-loss programme (intervention, N = 117, mean weight-loss 10 kg, 46% diabetes remission) or best-practice care by guidelines (control, N = 143, mean weight-loss 1 kg, 4% diabetes remission) were subject to proteomic analysis using the Olink Oncology-II platform (48% of participants were female; 52% male). To identify proteins which may be altered by the weight-loss intervention, the difference in protein levels between groups at baseline and 1 year was examined using linear regression. Mendelian randomization (MR) was performed to extend these results to evaluate cancer risk and elucidate possible biological mechanisms linking type 2 diabetes and cancer development. MR analyses were conducted using independent datasets, including large cancer meta-analyses, UK Biobank, and FinnGen, to estimate potential causal relationships between proteins modified during intentional weight loss and the risk of colorectal, breast, endometrial, gallbladder, liver, and pancreatic cancers. Findings Nine proteins were modified by the intervention: glycoprotein Nmb; furin; Wnt inhibitory factor 1; toll-like receptor 3; pancreatic prohormone; erb-b2 receptor tyrosine kinase 2; hepatocyte growth factor; endothelial cell specific molecule 1 and Ret proto-oncogene (Holm corrected P-value &lt;0.05). Mendelian randomization analyses indicated a causal relationship between predicted circulating furin and glycoprotein Nmb on breast cancer risk (odds ratio (OR) = 0.81, 95% confidence interval (CI) = 0.67–0.99, P-value = 0.03; and OR = 0.88, 95% CI = 0.78–0.99, P-value = 0.04 respectively), though these results were not supported in sensitivity analyses examining violations of MR assumptions. Interpretation Intentional weight loss among individuals with recently diagnosed diabetes may modify levels of cancer-related proteins in serum. Further evaluation of the proteins identified in this analysis could reveal molecular pathways that mediate the effect of adiposity and type 2 diabetes on cancer risk

    Exploring the role of circulating proteins in multiple myeloma risk: a Mendelian randomization study

    No full text
    BackgroundMultiple myeloma (MM) is an incurable blood cancer with unclear aetiology. Proteomics, the high-throughput measurement of circulating proteins, is a valuable tool in exploring mechanisms of disease. We investigated the causal relationship between circulating proteins and MM risk, using two of the largest cohorts with proteomics data to-date. MethodsWe performed bidirectional two-sample Mendelian randomization (MR; forward MR = causal effect estimation of proteins and MM risk; reverse MR = causal effect estimation of MM risk and proteins). Summary statistics for plasma proteins were obtained from genome-wide association studies performed using SomaLogic (N=35,559; deCODE) and Olink (N=34,557; UK Biobank; UKB) proteomic platforms and for MM risk from a meta-analysis of UKB and FinnGen (case=1,649; control = 727,247) or FinnGen only (case=1,085; control=271,463). Cis-SNPs associated with protein levels were used to instrument circulating proteins. We evaluated proteins for the consistency of directions of effect across MR analyses (with 95% confidence intervals not overlapping the null) and corroborating evidence from genetic colocalization. ResultsIn the forward MR, 994 (SomaLogic) and 1,570 (Olink) proteins were instrumentable. 440 proteins were analysed in both deCODE and UKB; 302 (69%) of these showed consistent directions of effect in the forward MR. Seven proteins had 95% confidence intervals (CIs) that did not overlap the null in both forward MR analyses and did not have evidence for an effect in the reverse direction. MR evidence was strongest for the effect of dermatopontin on MM risk (deCODE) OR: 1.49 per SD higher protein levels, 95% CI 1.06-2.09; (UKB) OR: 1.47; 95% CI 1.14-1.90). Evidence from genetic colocalization did not meet our threshold for a shared causal signal between this protein and MM risk (h4&lt;0.8). ConclusionsOur results highlight seven circulating proteins which may be involved in MM risk. Although evidence from genetic colocalization suggests these associations may not be robust to horizontal pleiotropy, these proteins may be useful markers of MM risk. Future work should explore the utility of these proteins in disease prediction or prevention using proteomic data from patients with MM or precursor conditions. <br/

    Exploring the role of circulating proteins in multiple myeloma risk: a Mendelian randomization study

    No full text
    BackgroundMultiple myeloma (MM) is an incurable blood cancer with unclear aetiology. Proteomics, the high-throughput measurement of circulating proteins, is a valuable tool in exploring mechanisms of disease. We investigated the causal relationship between circulating proteins and MM risk, using two of the largest cohorts with proteomics data to-date. MethodsWe performed bidirectional two-sample Mendelian randomization (MR; forward MR = causal effect estimation of proteins and MM risk; reverse MR = causal effect estimation of MM risk and proteins). Summary statistics for plasma proteins were obtained from genome-wide association studies performed using SomaLogic (N=35,559; deCODE) and Olink (N=34,557; UK Biobank; UKB) proteomic platforms and for MM risk from a meta-analysis of UKB and FinnGen (case=1,649; control = 727,247) or FinnGen only (case=1,085; control=271,463). Cis-SNPs associated with protein levels were used to instrument circulating proteins. We evaluated proteins for the consistency of directions of effect across MR analyses (with 95% confidence intervals not overlapping the null) and corroborating evidence from genetic colocalization. ResultsIn the forward MR, 994 (SomaLogic) and 1,570 (Olink) proteins were instrumentable. 440 proteins were analysed in both deCODE and UKB; 302 (69%) of these showed consistent directions of effect in the forward MR. Seven proteins had 95% confidence intervals (CIs) that did not overlap the null in both forward MR analyses and did not have evidence for an effect in the reverse direction. MR evidence was strongest for the effect of dermatopontin on MM risk (deCODE) OR: 1.49 per SD higher protein levels, 95% CI 1.06-2.09; (UKB) OR: 1.47; 95% CI 1.14-1.90). Evidence from genetic colocalization did not meet our threshold for a shared causal signal between this protein and MM risk (h4&lt;0.8). ConclusionsOur results highlight seven circulating proteins which may be involved in MM risk. Although evidence from genetic colocalization suggests these associations may not be robust to horizontal pleiotropy, these proteins may be useful markers of MM risk. Future work should explore the utility of these proteins in disease prediction or prevention using proteomic data from patients with MM or precursor conditions. <br/

    Itraconazole targets cell cycle heterogeneity in colorectal cancer.

    No full text
    Cellular dormancy and heterogeneity in cell cycle length provide important explanations for treatment failure after adjuvant therapy with S-phase cytotoxics in colorectal cancer (CRC), yet the molecular control of the dormant versus cycling state remains unknown. We sought to understand the molecular features of dormant CRC cells to facilitate rationale identification of compounds to target both dormant and cycling tumor cells. Unexpectedly, we demonstrate that dormant CRC cells are differentiated, yet retain clonogenic capacity. Mouse organoid drug screening identifies that itraconazole generates spheroid collapse and loss of dormancy. Human CRC cell dormancy and tumor growth can also be perturbed by itraconazole, which is found to inhibit Wnt signaling through noncanonical hedgehog signaling. Preclinical validation shows itraconazole to be effective in multiple assays through Wnt inhibition, causing both cycling and dormant cells to switch to global senescence. These data provide preclinical evidence to support an early phase trial of itraconazole in CRC

    Itraconazole targets cell cycle heterogeneity in colorectal cancer

    No full text
    Cellular dormancy and heterogeneity in cell cycle length provide important explanations for treatment failure after adjuvant therapy with S-phase cytotoxics in colorectal cancer (CRC), yet the molecular control of the dormant versus cycling state remains unknown. We sought to understand the molecular features of dormant CRC cells to facilitate rationale identification of compounds to target both dormant and cycling tumor cells. Unexpectedly, we demonstrate that dormant CRC cells are differentiated, yet retain clonogenic capacity. Mouse organoid drug screening identifies that itraconazole generates spheroid collapse and loss of dormancy. Human CRC cell dormancy and tumor growth can also be perturbed by itraconazole, which is found to inhibit Wnt signaling through noncanonical hedgehog signaling. Preclinical validation shows itraconazole to be effective in multiple assays through Wnt inhibition, causing both cycling and dormant cells to switch to global senescence. These data provide preclinical evidence to support an early phase trial of itraconazole in CRC
    corecore