31 research outputs found

    LIN28 is selectively expressed by primordial and pre-meiotic germ cells in the human fetal ovary

    Get PDF
    Germ cell development requires timely transition from primordial germ cell (PGC) self-renewal to meiotic differentiation. This is associated with widespread changes in gene expression, including downregulation of stem cell–associated genes, such as OCT4 and KIT, and upregulation of markers of germ cell differentiation and meiosis, such as VASA, STRA8, and SYCP3. The stem cell–expressed RNA-binding protein Lin28 has recently been demonstrated to be essential for PGC specification in mice, and LIN28 is expressed in human germ cell tumors with phenotypic similarities to human fetal germ cells. We have therefore examined the expression of LIN28 during normal germ cell development in the human fetal ovary, from the PGC stage, through meiosis to the initiation of follicle formation. LIN28 transcript levels were highest when the gonad contained only PGCs, and decreased significantly with increasing gestation, coincident with the onset of germ cell differentiation. Immunohistochemistry revealed LIN28 protein expression to be germ cell–specific at all stages examined. All PGCs expressed LIN28, but at later gestations expression was restricted to a subpopulation of germ cells, which we demonstrate to be primordial and premeiotic germ cells based on immunofluorescent colocalization of LIN28 and OCT4, and absence of overlap with the meiosis marker SYCP3. We also demonstrate the expression of the LIN28 target precursor pri-microRNA transcripts pri-LET7a/f/d and pri-LET-7g in the human fetal ovary, and that expression of these is highest at the PGC stage, mirroring that of LIN28. The spatial and temporal restriction of LIN28 expression and coincident peaks of expression of LIN28 and target pri-microRNAs suggest important roles for this protein in the maintenance of the germline stem cell state and the regulation of microRNA activity in the developing human ovary

    BMP signalling in human fetal ovary somatic cells is modulated in a gene-specific fashion by GREM1 and GREM2

    Get PDF
    STUDY QUESTION: Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? STUDY FINDING: BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. WHAT IS KNOWN ALREADY: Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. MAIN RESULTS AND THE ROLE OF CHANCE: We demonstrate that the expression of BMP antagonists GREM1, GREM2 and CHRD  increases in the lead-up to primordial follicle formation in the human fetal ovary, and that the BMP pathway is active in cultured ovarian somatic cells. This leads to differential changes in the expression of a number of genes, some of which are further modulated by GREM1 and/or GREM2. The positive transcriptional regulation of LGR5 (a marker of less differentiated somatic cells) by BMP4 in vitro suggests that increasing levels of GREM1 and reduced levels of BMP4 as the ovary develops in vivo may act to reduce LGR5 levels and allow pre-granulosa cell differentiation. LIMITATIONS, REASONS FOR CAUTION: While we have demonstrated that markers of different somatic cell types are expressed in the cultured ovarian somatic cells, their proportions may not represent the same cells in the intact ovary which also contains germ cells. WIDER IMPLICATIONS OF THE FINDINGS: This study extends previous work identifying germ cells as targets of ovarian BMP signalling, and suggests BMPs may regulate the development of both germ and somatic cells in the developing ovary around the time of follicle formation. LARGE SCALE DATA: Not applicable. STUDY FUNDING/COMPETING INTERESTS: This work was supported by The UK Medical Research Council (Grant No.: G1100357 to RAA), and Medical Research Scotland (Grant No. 345FRG to AJC). The authors have no competing interests to declare

    Retinoic Acid Signalling and the Control of Meiotic Entry in the Human Fetal Gonad

    Get PDF
    The development of mammalian fetal germ cells along oogenic or spermatogenic fate trajectories is dictated by signals from the surrounding gonadal environment. Germ cells in the fetal testis enter mitotic arrest, whilst those in the fetal ovary undergo sex-specific entry into meiosis, the initiation of which is thought to be mediated by selective exposure of fetal ovarian germ cells to mesonephros-derived retinoic acid (RA). Aspects of this model are hard to reconcile with the spatiotemporal pattern of germ cell differentiation in the human fetal ovary, however. We have therefore examined the expression of components of the RA synthesis, metabolism and signalling pathways, and their downstream effectors and inhibitors in germ cells around the time of the initiation of meiosis in the human fetal gonad. Expression of the three RA-synthesising enzymes, ALDH1A1, 2 and 3 in the fetal ovary and testis was equal to or greater than that in the mesonephros at 8–9 weeks gestation, indicating an intrinsic capacity within the gonad to synthesise RA. Using immunohistochemistry to detect RA receptors RARα, β and RXRα, we find germ cells to be the predominant target of RA signalling in the fetal human ovary, but also reveal widespread receptor nuclear localization indicative of signalling in the testis, suggesting that human fetal testicular germ cells are not efficiently shielded from RA by the action of the RA-metabolising enzyme CYP26B1. Consistent with this, expression of CYP26B1 was greater in the human fetal ovary than testis, although the sexually-dimorphic expression patterns of the germ cell-intrinsic regulators of meiotic initiation, STRA8 and NANOS2, appear conserved. Finally, we demonstrate that RA induces a two-fold increase in STRA8 expression in cultures of human fetal testis, but is not sufficient to cause widespread meiosis-associated gene expression. Together, these data indicate that while local production of RA within the fetal ovary may be important in regulating the onset of meiosis in the human fetal ovary, mechanisms other than CYP26B1-mediated metabolism of RA may exist to inhibit the entry of germ cells into meiosis in the human fetal testis

    GDF9 is Transiently Expressed in Oocytes before Follicle Formation in the Human Fetal Ovary and is Regulated by a Novel NOBOX Transcript

    Get PDF
    During human fetal ovary development, the process of primordial follicle formation is immediately preceded by a highly dynamic period of germ cell and somatic cell reorganisation. This is regulated by germ-cell specific transcription regulators, by the conserved RNA binding proteins DAZL and BOLL and by secreted growth factors of the TGFβ family, including activin βA: these all show changing patterns of expression preceding follicle formation. In mice, the transcription factor Nobox is essential for follicle formation and oocyte survival, and NOBOX regulates the expression of GDF9 in humans. We have therefore characterised the expression of GDF9 in relation to these known key factors during follicle formation in the human fetal ovary. mRNA levels of GDF9, BMP15 and NOBOX were quantified by qRT-PCR and showed dramatic increases across gestation. GDF9 protein expression was localised by immunohistochemistry to the same population of germ cells as those expressing activin βA prior to follicle formation but did not co-localise with either BOLL or DAZL. A novel NOBOX isoform was identified in fetal ovary that was shown to be capable of up-regulating the GDF9 promoter in reporter assays. Thus, during oogenesis in humans, oocytes go through a dynamic and very sharply demarcated sequence of changes in expression of these various proteins, even within individual germ cell nests, likely to be of major functional significance in determining selective germ cell survival at this key stage in ovarian development. Transcriptional variation may contribute to the range of age of onset of POI in women with NOBOX mutations

    Fetal cyclophosphamide exposure induces testicular cancer and reduced spermatogenesis and ovarian follicle numbers in mice

    Get PDF
    <div><p>Exposure to radiation during fetal development induces testicular germ cell tumors (TGCT) and reduces spermatogenesis in mice. However, whether DNA damaging chemotherapeutic agents elicit these effects in mice remains unclear. Among such agents, cyclophosphamide (CP) is currently used to treat breast cancer in pregnant women, and the effects of fetal exposure to this drug manifested in the offspring must be better understood to offer such patients suitable counseling. The present study was designed to determine whether fetal exposure to CP induces testicular cancer and/or gonadal toxicity in 129 and in 129.MOLF congenic (L1) mice. Exposure to CP on embryonic days 10.5 and 11.5 dramatically increased TGCT incidence to 28% in offspring of 129 mice (control value, 2%) and to 80% in the male offspring of L1 (control value 33%). These increases are similar to those observed in both lines of mice by radiation. <i>In utero</i> exposure to CP also significantly reduced testis weights at 4 weeks of age to ∼70% of control and induced atrophic seminiferous tubules in ∼30% of the testes. When the <i>in utero</i> CP-exposed 129 mice reached adulthood, there were significant reductions in testicular and epididymal sperm counts to 62% and 70%, respectively, of controls. In female offspring, CP caused the loss of 77% of primordial follicles and increased follicle growth activation. The results indicate that i) DNA damage is a common mechanism leading to induction of testicular cancer, ii) increased induction of testis cancer by external agents is proportional to the spontaneous incidence due to inherent genetic susceptibility, and iii) children exposed to radiation or DNA damaging chemotherapeutic agents <i>in utero</i> may have increased risks of developing testis cancer and having reduced spermatogenic potential or diminished reproductive lifespan.</p></div

    A Developmental Stage-Specific Switch from DAZL to BOLL Occurs during Fetal Oogenesis in Humans, but Not Mice

    Get PDF
    The Deleted in Azoospermia gene family encodes three germ cell-specific RNA-binding proteins (DAZ, DAZL and BOLL) that are essential for gametogenesis in diverse species. Targeted disruption of Boll in mice causes male-specific spermiogenic defects, but females are apparently fertile. Overexpression of human BOLL promotes the derivation of germ cell-like cells from genetically female (XX), but not male (XY) human ES cells however, suggesting a functional role for BOLL in regulating female gametogenesis in humans. Whether BOLL is expressed during oogenesis in mammals also remains unclear. We have therefore investigated the expression of BOLL during fetal oogenesis in humans and mice. We demonstrate that BOLL protein is expressed in the germ cells of the human fetal ovary, at a later developmental stage than, and almost mutually-exclusive to, the expression of DAZL. Strikingly, BOLL is downregulated, and DAZL re-expressed, as primordial follicles form, revealing BOLL expression to be restricted to a narrow window during fetal oogenesis. By quantifying the extent of co-expression of DAZL and BOLL with markers of meiosis, we show that this window likely corresponds to the later stages of meiotic prophase I. Finally, we demonstrate that Boll is also transiently expressed during oogenesis in the fetal mouse ovary, but is simultaneously co-expressed within the same germ cells as Dazl. These data reveal significant similarities and differences between the expression of BOLL homologues during oogenesis in humans and mice, and raise questions as to the validity of the Boll(-/-) mouse as a model for understanding BOLL function during human oogenesis

    FMRP associates with cytoplasmic granules at the onset of meiosis in the human oocyte

    Get PDF
    Germ cell development and primordial follicle formation during fetal life is critical in establishing the pool of oocytes that subsequently determines the reproductive lifespan of women. Fragile X-associated primary ovarian insufficiency (FXPOI) is caused by inheritance of the FMR1 premutation allele and approximately 20% of women with the premutation allele develop ovarian dysfunction and premature ovarian insufficiency. However, the underlying disease mechanism remains obscure, and a potential role of FMRP in human ovarian development has not been explored. We have characterised the expression of FMR1 and FMRP in the human fetal ovary at the time of germ cell entry into meiosis through to primordial follicle formation. FMRP expression is exclusively in germ cells in the human fetal ovary. Increased FMRP expression in germ cells coincides with the loss of pluripotency-associated protein expression, and entry into meiosis is associated with FMRP granulation. In addition, we have uncovered FMRP association with components of P-bodies and stress granules, suggesting it may have a role in mRNA metabolism at the time of onset of meiosis. Therefore, this data support the hypothesis that FMRP plays a role regulating mRNAs during pivotal maturational processes in fetal germ cells, and ovarian dysfunction resulting from FMR1 premutation may have its origins during these stages of oocyte development

    Correction: A Developmental Stage-Specific Switch from DAZL to BOLL Occurs during Fetal Oogenesis in Humans, but Not Mice.

    No full text
    [This corrects the article DOI: 10.1371/journal.pone.0073996.]
    corecore