8,479 research outputs found

    Angular momentum conservation for uniformly expanding flows

    Get PDF
    Angular momentum has recently been defined as a surface integral involving an axial vector and a twist 1-form, which measures the twisting around of space-time due to a rotating mass. The axial vector is chosen to be a transverse, divergence-free, coordinate vector, which is compatible with any initial choice of axis and integral curves. Then a conservation equation expresses rate of change of angular momentum along a uniformly expanding flow as a surface integral of angular momentum densities, with the same form as the standard equation for an axial Killing vector, apart from the inclusion of an effective energy tensor for gravitational radiation.Comment: 5 revtex4 pages, 3 eps figure

    Generalized inverse mean curvature flows in spacetime

    Full text link
    Motivated by the conjectured Penrose inequality and by the work of Hawking, Geroch, Huisken and Ilmanen in the null and the Riemannian case, we examine necessary conditions on flows of two-surfaces in spacetime under which the Hawking quasilocal mass is monotone. We focus on a subclass of such flows which we call uniformly expanding, which can be considered for null as well as for spacelike directions. In the null case, local existence of the flow is guaranteed. In the spacelike case, the uniformly expanding condition leaves a 1-parameter freedom, but for the whole family, the embedding functions satisfy a forward-backward parabolic system for which local existence does not hold in general. Nevertheless, we have obtained a generalization of the weak (distributional) formulation of this class of flows, generalizing the corresponding step of Huisken and Ilmanen's proof of the Riemannian Penrose inequality.Comment: 21 pages, 1 figur

    How genomic information is accessed in clinical practice: an electronic survey of UK general practitioners.

    Get PDF
    Genomic technologies are having an increasing impact across medicine, including primary care. To enable their wider adoption and realize their potential, education of primary health-care practitioners will be required. To enable the development of such resources, understanding where GPs currently access genomic information is needed. One-hundred fifty-nine UK GPs completed the survey in response to an open invitation, between September 2017 and September 2018. Questions were in response to 4 clinical genomic scenarios, with further questions exploring resources used for rare disease patients, direct-to-consumer genetic testing and collecting a family history. Respondents were most commonly GP principals (independent GPs who own their clinic) (64.8%), aged 35-49 years (54%), worked as a GP for more than 15 years (44%) and practiced within suburban locations (typically wealthier) (50.3%). The most popular 'just in time' education source for all clinical genomic scenarios were online primary care focussed resources with general Internet search engines also popular. For genomic continuous medical education, over 70% of respondents preferred online learning. Considering specific scenarios, local guidelines were a popular resource for the familial breast cancer scenario. A large proportion (41%) had not heard of Genomics England's 100,000 genome project. Few respondents (4%) would access rare disease specific Internet resources (Orphanet, OMIM). Twenty-five percent of respondents were unsure how to respond to a direct-to-consumer commercial genetic test query, with 41% forwarding such queries to local genetic services. GPs require concise, relevant, primary care focussed resources in trusted and familiar online repositories of information. Inadequate genetic education of GPs could increase burden on local genetic services

    Unified first law of black-hole dynamics and relativistic thermodynamics

    Full text link
    A unified first law of black-hole dynamics and relativistic thermodynamics is derived in spherically symmetric general relativity. This equation expresses the gradient of the active gravitational energy E according to the Einstein equation, divided into energy-supply and work terms. Projecting the equation along the flow of thermodynamic matter and along the trapping horizon of a blackhole yield, respectively, first laws of relativistic thermodynamics and black-hole dynamics. In the black-hole case, this first law has the same form as the first law of black-hole statics, with static perturbations replaced by the derivative along the horizon. There is the expected term involving the area and surface gravity, where the dynamic surface gravity is defined as in the static case but using the Kodama vector and trapping horizon. This surface gravity vanishes for degenerate trapping horizons and satisfies certain expected inequalities involving the area and energy. In the thermodynamic case, the quasi-local first law has the same form, apart from a relativistic factor, as the classical first law of thermodynamics, involving heat supply and hydrodynamic work, but with E replacing the internal energy. Expanding E in the Newtonian limit shows that it incorporates the Newtonian mass, kinetic energy, gravitational potential energy and thermal energy. There is also a weak type of unified zeroth law: a Gibbs-like definition of thermal equilibrium requires constancy of an effective temperature, generalising the Tolman condition and the particular case of Hawking radiation, while gravithermal equilibrium further requires constancy of surface gravity. Finally, it is suggested that the energy operator of spherically symmetric quantum gravity is determined by the Kodama vector, which encodes a dynamic time related to E.Comment: 18 pages, TeX, expanded somewhat, to appear in Class. Quantum Gra

    Wyman's solution, self-similarity and critical behaviour

    Full text link
    We show that the Wyman's solution may be obtained from the four-dimensional Einstein's equations for a spherically symmetric, minimally coupled, massless scalar field by using the continuous self-similarity of those equations. The Wyman's solution depends on two parameters, the mass MM and the scalar charge ÎŁ\Sigma. If one fixes MM to a positive value, say M0M_0, and let ÎŁ2\Sigma^2 take values along the real line we show that this solution exhibits critical behaviour. For ÎŁ2>0\Sigma^2 >0 the space-times have eternal naked singularities, for ÎŁ2=0\Sigma^2 =0 one has a Schwarzschild black hole of mass M0M_0 and finally for −M02≀Σ2<0-M_0^2 \leq \Sigma^2 < 0 one has eternal bouncing solutions.Comment: Revtex version, 15pages, 6 figure

    Incidence of Guillain-Barre syndrome among patients with Campylobacter infection: A general practice research database study

    Get PDF
    The association between Campylobacter infection and subsequent Guillain-Barre syndrome (GBS) has been well documented. To date, however, there exists no direct estimate of the incidence of GBS among patients with Campylobacter infection. Using the General Practice Research Database, we estimate the incidence of GBS in a cohort of patients presenting with Campylobacter enteritis to be 1.17/1000 person-years, a rate 77 times greater than that in the general population. The probability that an individual who develops Campylobacter enteritis will also develop GBS during the subsequent 2-month period is < 2/10,000

    Cosmic Evolution and Primordial Black Hole Evaporation

    Get PDF
    A cosmological model in which primordial black holes (PBHs) are present in the cosmic fluid at some instant t=t_0 is investigated. The time t_0 is naturally identified with the end of the inflationary period. The PBHs are assumed to be nonrelativistic in the comoving fluid, to have the same mass, and may be subject to evaporation for t>t_0. Our present work is related to an earlier paper of Zimdahl and Pavon [Phys. Rev. D {\bf 58}, 103506 (1998)], but in contradistinction to these authors we assume that the (negative) production rate of the PBHs is zero. This assumption appears to us to be more simple and more physical. Consequences of the formalism are worked out. In particular, the four-divergence of the entropy four-vector in combination with the second law in thermodynamics show in a clear way how the the case of PBH evaporation corresponds to a production of entropy. Accretion of radiation onto the black holes is neglected. We consider both a model where two different sub-fluids interact, and a model involving one single fluid only. In the latter case an effective bulk viscosity naturally appears in the formalism.Comment: 18 pages, LaTeX, no figures. Extended discussion of the black hole evaporation process. Version to appear in Phys. Rev.

    Energy conservation for dynamical black holes

    Full text link
    An energy conservation law is described, expressing the increase in mass-energy of a general black hole in terms of the energy densities of the infalling matter and gravitational radiation. For a growing black hole, this first law of black-hole dynamics is equivalent to an equation of Ashtekar & Krishnan, but the new integral and differential forms are regular in the limit where the black hole ceases to grow. An effective gravitational-radiation energy tensor is obtained, providing measures of both ingoing and outgoing, transverse and longitudinal gravitational radiation on and near a black hole. Corresponding energy-tensor forms of the first law involve a preferred time vector which plays the role for dynamical black holes which the stationary Killing vector plays for stationary black holes. Identifying an energy flux, vanishing if and only if the horizon is null, allows a division into energy-supply and work terms, as in the first law of thermodynamics. The energy supply can be expressed in terms of area increase and a newly defined surface gravity, yielding a Gibbs-like equation, with a similar form to the so-called first law for stationary black holes.Comment: 4 revtex4 pages. Many (mostly presentational) changes; emphasizes the definition of gravitational radiation in the strong-field regim

    The Magnetization of Cu_2(C_5H_{12}N_2)_2Cl_4 : A Heisenberg Spin Ladder System

    Full text link
    We study the magnetization of a Heisenberg spin ladder using exact diagonalization techniques, finding three distinct magnetic phases. We consider the results in relation to the experimental behaviour of the new copper compound Cu_2(C_5H_{12}N_2)_2Cl_4 and deduce that the compound is well described by such a model with a ratio of `chain' to `rung' bond strengths (J/J^\prime) of the order of 0.2, consistent with results from the magnetic susceptibility. The effects of temperature, spin impurities and additional diagonal bonds are presented and we give evidence that these diagonal bonds are indeed of a ferromagnetic nature.Comment: Latex file (4 pages), related figures (encapsulated postscript) appende

    Spacetimes foliated by Killing horizons

    Full text link
    It seems to be expected, that a horizon of a quasi-local type, like a Killing or an isolated horizon, by analogy with a globally defined event horizon, should be unique in some open neighborhood in the spacetime, provided the vacuum Einstein or the Einstein-Maxwell equations are satisfied. The aim of our paper is to verify whether that intuition is correct. If one can extend a so called Kundt metric, in such a way that its null, shear-free surfaces have spherical spacetime sections, the resulting spacetime is foliated by so called non-expanding horizons. The obstacle is Kundt's constraint induced at the surfaces by the Einstein or the Einstein-Maxwell equations, and the requirement that a solution be globally defined on the sphere. We derived a transformation (reflection) that creates a solution to Kundt's constraint out of data defining an extremal isolated horizon. Using that transformation, we derived a class of exact solutions to the Einstein or Einstein-Maxwell equations of very special properties. Each spacetime we construct is foliated by a family of the Killing horizons. Moreover, it admits another, transversal Killing horizon. The intrinsic and extrinsic geometry of the transversal Killing horizon coincides with the one defined on the event horizon of the extremal Kerr-Newman solution. However, the Killing horizon in our example admits yet another Killing vector tangent to and null at it. The geometries of the leaves are given by the reflection.Comment: LaTeX 2e, 13 page
    • 

    corecore