18 research outputs found
A guide to mechanobiology: Where biology and physics meet
AbstractCells actively sense and process mechanical information that is provided by the extracellular environment to make decisions about growth, motility and differentiation. It is important to understand the underlying mechanisms given that deregulation of the mechanical properties of the extracellular matrix (ECM) is implicated in various diseases, such as cancer and fibrosis. Moreover, matrix mechanics can be exploited to program stem cell differentiation for organ-on-chip and regenerative medicine applications. Mechanobiology is an emerging multidisciplinary field that encompasses cell and developmental biology, bioengineering and biophysics. Here we provide an introductory overview of the key players important to cellular mechanobiology, taking a biophysical perspective and focusing on a comparison between flat versus three dimensional substrates. This article is part of a Special Issue entitled: Mechanobiology
GRPR versus PSMA:expression profiles during prostate cancer progression demonstrate the added value of GRPR-targeting theranostic approaches
Introduction: Central to targeted radionuclide imaging and therapy of prostate cancer (PCa) are prostate-specific membrane antigen (PSMA)-targeting radiopharmaceuticals. Gastrin-releasing peptide receptor (GRPR) targeting has been proposed as a potential additional approach for PCa theranostics. The aim of this study was to investigate to what extent and at what stage of the disease GRPR-targeting applications can complement PSMA-targeting theranostics in the management of PCa. Methods: Binding of the GRPR- and PSMA-targeting radiopharmaceuticals [177Lu]Lu-NeoB and [177Lu]Lu-PSMA-617, respectively, was evaluated and compared on tissue sections of 20 benign prostatic hyperplasia (BPH), 16 primary PCa and 17 progressive castration-resistant PCa (CRPC) fresh frozen tissue specimens. Hematoxylin-eosin and alpha-methylacyl-CoA racemase stains were performed to identify regions of prostatic adenocarcinoma and potentially high-grade prostatic intraepithelial neoplasia. For a subset of primary PCa samples, RNA in situ hybridization (ISH) was used to identify target mRNA expression in defined tumor regions. Results: The highest median [177Lu]Lu-NeoB binding was observed in primary PCa samples, while median and overall [177Lu]Lu-PSMA-617 binding was highest in CRPC samples. The highest [177Lu]Lu-NeoB binding was observed in 3/17 CRPC samples of which one sample showed no [177Lu]Lu-PSMA-617 binding. RNA ISH analyses showed a trend between mRNA expression and radiopharmaceutical binding, and confirmed the distinct GRPR and PSMA expression patterns in primary PCa observed with radiopharmaceutical binding. Conclusion: Our study emphasizes that GRPR-targeting approaches can contribute to improved PCa management and complement currently applied PSMA-targeting strategies in both early and late stage PCa.</p
Aberrant APOBEC3B Expression in Breast Cancer Is Linked to Proliferation and Cell Cycle Phase
APOBEC3B (A3B) is aberrantly overexpressed in a subset of breast cancers, where it associates with advanced disease, poor prognosis, and treatment resistance, yet the causes of A3B dysregulation in breast cancer remain unclear. Here, A3B mRNA and protein expression levels were quantified in different cell lines and breast tumors and related to cell cycle markers using RT-qPCR and multiplex immunofluorescence imaging. The inducibility of A3B expression during the cell cycle was additionally addressed after cell cycle synchronization with multiple methods. First, we found that A3B protein levels within cell lines and tumors are heterogeneous and associate strongly with the proliferation marker Cyclin B1 characteristic of the G2/M phase of the cell cycle. Second, in multiple breast cancer cell lines with high A3B, expression levels were observed to oscillate throughout the cell cycle and again associate with Cyclin B1. Third, induction of A3B expression is potently repressed throughout G0/early G1, likely by RB/E2F pathway effector proteins. Fourth, in cells with low A3B, induction of A3B through the PKC/ncNF-κB pathway occurs predominantly in actively proliferating cells and is largely absent in cells arrested in G0. Altogether, these results support a model in which dysregulated A3B overexpression in breast cancer is the cumulative result of proliferation-associated relief from repression with concomitant pathway activation during the G2/M phase of the cell cycle.</p
Frequency of Peripheral CD8+ T Cells Expressing Chemo-Attractant Receptors CCR1, 4 and 5 Increases in NPC Patients with EBV Clearance upon Radiotherapy
Radiotherapy (RT) is the standard-of-care for Epstein–Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC), where the post-RT clearance of plasma EBV DNA is prognostic. Currently, it is not known whether the post-RT clearance of plasma EBV DNA is related to the presence of circulating T-cell subsets. Blood samples from NPC patients were used to assess the frequency of T-cell subsets relating to differentiation, co-signaling and chemotaxis. Patients with undetectable versus detectable plasma EBV DNA levels post-RT were categorized as clearers vs. non-clearers. Clearers had a lower frequency of PD1+CD8+ T cells as well as CXCR3+CD8+ T cells during RT compared to non-clearers. Clearers exclusively showed a temporal increase in chemo-attractant receptors CCR1, 4 and/or 5, expressing CD8+ T cells upon RT. The increase in CCR-expressing CD8+ T cells was accompanied by a drop in naïve CD8+ T cells and an increase in OX40+CD8+ T cells. Upon stratifying these patients based on clinical outcome, the dynamics of CCR-expressing CD8+ T cells were in concordance with the non-recurrence of NPC. In a second cohort, non-recurrence associated with higher quantities of circulating CCL14 and CCL15. Collectively, our findings relate plasma EBV DNA clearance post-RT to T-cell chemotaxis, which requires validation in larger cohorts.</p
A mechanical-biochemical feedback loop regulates remodeling in the actin cytoskeleton
Cytoskeletal actin assemblies transmit mechanical stresses that molecular sensors transduce into biochemical signals to trigger cytoskeletal remodeling and other downstream events. How mechanical and biochemical signaling cooperate to orchestrate complex remodeling tasks has not been elucidated. Here, we studied remodeling of contractile actomyosin stress fibers. When fibers spontaneously fractured, they recoiled and disassembled actin synchronously. The disassembly rate was accelerated more than twofold above the resting value, but only when contraction increased the actin density to a threshold value following a time delay. A mathematical model explained this as originating in the increased overlap of actin filaments produced by myosin II-driven contraction. Above a threshold overlap, this mechanical signal is transduced into accelerated disassembly by a mechanism that may sense overlap directly or through associated elastic stresses. This biochemical response lowers the actin density, overlap, and stresses. The model showed that this feedback mechanism, together with rapid stress transmission along the actin bundle, spatiotemporally synchronizes actin disassembly and fiber contraction. Similar actin remodeling kinetics occurred in expanding or contracting intact stress fibers but over much longer timescales. The model accurately described these kinetics, with an almost identical value of the threshold overlap that accelerates disassembly. Finally, we measured resting stress fibers, for which the model predicts constant actin overlap that balances disassembly and assembly. The overlap was indeed regulated, with a value close to that predicted. Our results suggest that coordinated mechanical and biochemical signaling enables extended actomyosin assemblies to adapt dynamically to the mechanical stresses they convey and direct their own remodeling
A mechanical-biochemical feedback loop regulates remodeling in the actin cytoskeleton
Cytoskeletal actin assemblies transmit mechanical stresses that molecular sensors transduce into biochemical signals to trigger cytoskeletal remodeling and other downstream events. How mechanical and biochemical signaling cooperate to orchestrate complex remodeling tasks has not been elucidated. Here, we studied remodeling of contractile actomyosin stress fibers. When fibers spontaneously fractured, they recoiled and disassembled actin synchronously. The disassembly rate was accelerated more than twofold above the resting value, but only when contraction increased the actin density to a threshold value following a time delay. A mathematical model explained this as originating in the increased overlap of actin filaments produced by myosin II-driven contraction. Above a threshold overlap, this mechanical signal is transduced into accelerated disassembly by a mechanism that may sense overlap directly or through associated elastic stresses. This biochemical response lowers the actin density, overlap, and stresses. The model showed that this feedback mechanism, together with rapid stress transmission along the actin bundle, spatiotemporally synchronizes actin disassembly and fiber contraction. Similar actin remodeling kinetics occurred in expanding or contracting intact stress fibers but over much longer timescales. The model accurately described these kinetics, with an almost identical value of the threshold overlap that accelerates disassembly. Finally, we measured resting stress fibers, for which the model predicts constant actin overlap that balances disassembly and assembly. The overlap was indeed regulated, with a value close to that predicted. Our results suggest that coordinated mechanical and biochemical signaling enables extended actomyosin assemblies to adapt dynamically to the mechanical stresses they convey and direct their own remodeling
TME-analyzer: a new interactive and dynamic image analysis tool that identified immune cell distances as predictors for survival of triple negative breast cancer patients
Abstract Spatial distribution of intra-tumoral immune cell populations is considered a critical determinant of tumor evolution and response to therapy. The accurate and systemic search for contexture-based predictors would be accelerated by methods that allow interactive visualization and interrogation of tumor micro-environments (TME), independent of image acquisition platforms. To this end, we have developed the TME-Analyzer, a new image analysis tool, which we have benchmarked against 2 software tools regarding densities and networks of immune effector cells using multiplexed immune-fluorescent images of triple negative breast cancer (TNBC). With the TME-Analyzer we have identified a 10-parameter classifier, predominantly featuring cellular distances, that significantly predicted overall survival, and which was validated using multiplexed ion beam time of flight images from an independent cohort. In conclusion, the TME-Analyzer enabled accurate interactive analysis of the spatial immune phenotype from different imaging platforms as well as enhanced utility and aided the discovery of contextual predictors towards the survival of TNBC patients
Intratumoral Niches of B Cells and Follicular Helper T Cells, and the Absence of Regulatory T Cells, Associate with Longer Survival in Early-Stage Oral Tongue Cancer Patients
Simple Summary The 5-year survival of patients with early-stage oral cancer remains at 80% despite advances in treatment. We have previously shown that the proximity between CD20 B cells and CD4 T cells in the invasive margin acts as an independent prognosticator in OSCC, represented by the so-called CD20 cluster score. However, its exact underlying cellular contexture is unknown. In this study, we demonstrated that the abundance of follicular helper T cells as well as the proximity between these cells and B cells were important hallmarks for patients with a high CD20 cluster score and long survival. In early oral squamous cell carcinoma (OSCC), the occurrence of clusters between CD20 B cells and CD4 T cells in the invasive margin (IM) can be captured by using the CD20 cluster score, and is positively associated with patient survival. However, the exact contribution of different CD4 T cell subsets, as well as B cell subsets toward patient prognosis is largely unknown. To this end, we studied regulatory T cells ((Treg cells) FOXP3 and CD4), T helper-type 1 cells ((Th1 cells) Tbet and CD4), follicular helper T cells ((Tfh cells) Bcl6 and CD4), B cells (CD20), germinal center B cells ((GC B cells) BCL6 and CD20), and follicular dendritic cells ((fDCs) CD21) for their density, location, and interspacing using multiplex in situ immunofluorescence of 75 treatment-naive, primary OSCC patients. We observed that Treg, Th1-, Tfh-, and GC B cells, but not fDCs, were abundantly present in the stroma as compared with the tumor, and in the IM as compared with in the center of the tumor. Patients with high CD20 cluster scores had a high density of all three CD4 T cell subsets and GC B cells in the stromal IM as compared with patients with low CD20 cluster scores. Notably, enriched abundance of Tfh cells (HR 0.20, p = 0.04), and diminished abundance of Treg cells (HR 0.10, p = 0.03), together with an overall short distance between Tfh and B cells (HR:0.08, p < 0.01), but not between Treg and B cells (HR 0.43, p = 0.28), were significantly associated with overall survival of patients with OSCC. Our study identified the prognostic value of clusters between CD20 B cells and Tfh cells in the stromal IM of OSCC patients, and enabled an improved understanding of the clinical value of a high CD20 cluster score, which requires validation in larger clinical cohorts
3D-Engineered Scaffolds to Study Microtubes and Localization of Epidermal Growth Factor Receptor in Patient-Derived Glioma Cells
A major obstacle in glioma research is the lack of in vitro models that can retain cellular features of glioma cells in vivo. To overcome this limitation, a 3D-engineered scaffold, fabricated by two-photon polymerization, is developed as a cell culture model system to study patient-derived glioma cells. Scanning electron microscopy, (live cell) confocal microscopy, and immunohistochemistry are employed to assess the 3D model with respect to scaffold colonization, cellular morphology, and epidermal growth factor receptor localization. Both glioma patient-derived cells and established cell lines successfully colonize the scaffolds. Compared to conventional 2D cell cultures, the 3D-engineered scaffolds more closely resemble in vivo glioma cellular features and allow better monitoring of individual cells, cellular protrusions, and intracellular trafficking. Furthermore, less random cell motility and increased stability of cellular networks is observed for cells cultured on the scaffolds. The 3D-engineered glioma scaffolds therefore represent a promising tool for studying brain cancer mechanobiology as well as for drug screening studies.Micro and Nano Engineerin
V-domain ig suppressor of t cell activation (Vista) expression is an independent prognostic factor in multiple myeloma
Multiple myeloma (MM) is characterized by loss of anti-tumor T cell immunity. Despite moderate success of treatment with anti-PD1 antibodies, effective treatment is still challenged by poor T cell-mediated control of MM. To better enable identification of shortcomings in T-cell immunity that relate to overall survival (OS), we interrogated transcriptomic data of bone marrow samples from eight clinical trials (n = 1654) and one trial-independent patient cohort (n = 718) for multivariate analysis. Gene expression of V-domain Ig suppressor of T cell activation (VISTA) was observed to correlate to OS [hazard ratio (HR): 0.72; 95% CI: 0.61–0.83; p = 0.005]. Upon imaging the immune contexture of MM bone marrow tissues (n = 22) via multiplex in situ stainings, we demonstrated that VISTA was expressed predominantly by CD11b+ myeloid cells. The combination of abundance of VISTA+, CD11b+ cells in the tumor but not stromal tissue together with low presence of CD8+ T cells in the same tissue compartment, termed a high VISTA-associated T cell exclusion score, was significantly associated with short OS [HR: 16.6; 95% CI: 4.54–62.50; p < 0.0001]. Taken together, the prognostic value of a combined score of VISTA+, CD11b+ and CD8+ cells in the tumor compartment could potentially be utilized to guide stratification of MM patients for immune therapies