7 research outputs found

    Summary and Conclusions of the First DESY Test Beam User Workshop

    Full text link
    On October 5/6, 2017, DESY hosted the first DESY Test Beam User Workshop [1] which took place in Hamburg. Fifty participants from different user communities, ranging from LHC (ALICE, ATLAS, CMS, LHCb) to FAIR (CBM, PANDA), DUNE, Belle-II, future linear colliders (ILC, CLIC) and generic detector R&D presented their experiences with the DESY II Test Beam Facility, their concrete plans for the upcoming years and a first estimate of their needs for beam time in the long-term future beyond 2025. A special focus was also on additional improvements to the facility beyond its current capabilities

    Hard exclusive reactions and generalized parton distributions

    No full text
    The recently developed formalism of Generalized Parton Distributions (GPDs) allows connecting the experimental information of hard exclusive reactions to the spin contribution and even to the angular momentum contribution of quarks in the nucleon. By selecting different quantum numbers of the final state in exclusive productions, different GPDs can be addressed separately. The HERMES experiment at the HERA ring at DESY (Hamburg) made pioneering contributions and first constraints to Generalized Parton Distributions (GPDs), using hard exclusive vector meson production (EVMP) and Deeply Virtual Compton Scattering (DVCS). Using a novel recoil detector, HERMES managed to measure DVCS and EVMP free of any significant background. Selected results are highlighted and discussed in this paper

    Hard exclusive reactions and generalized parton distributions

    No full text
    The recently developed formalism of Generalized Parton Distributions (GPDs) allows connecting the experimental information of hard exclusive reactions to the spin contribution and even to the angular momentum contribution of quarks in the nucleon. By selecting different quantum numbers of the final state in exclusive productions, different GPDs can be addressed separately. The HERMES experiment at the HERA ring at DESY (Hamburg) made pioneering contributions and first constraints to Generalized Parton Distributions (GPDs), using hard exclusive vector meson production (EVMP) and Deeply Virtual Compton Scattering (DVCS). Using a novel recoil detector, HERMES managed to measure DVCS and EVMP free of any significant background. Selected results are highlighted and discussed in this paper

    Hard exclusive reactions and generalized parton distributions

    Full text link
    The recently developed formalism of Generalized Parton Distributions (GPDs) allows connecting the experimental information of hard exclusive reactions to the spin contribution and even to the angular momentum contribution of quarks in the nucleon. By selecting different quantum numbers of the final state in exclusive productions, different GPDs can be addressed separately. The HERMES experiment at the HERA ring at DESY (Hamburg) made pioneering contributions and first constraints to Generalized Parton Distributions (GPDs), using hard exclusive vector meson production (EVMP) and Deeply Virtual Compton Scattering (DVCS). Using a novel recoil detector, HERMES managed to measure DVCS and EVMP free of any significant background. Selected results are highlighted and discussed in this paper

    Hard exclusive reactions and generalized parton distributions

    No full text
    The recently developed formalism of Generalized Parton Distributions (GPDs) allows connecting the experimental information of hard exclusive reactions to the spin contribution and even to the angular momentum contribution of quarks in the nucleon. By selecting different quantum numbers of the final state in exclusive productions, different GPDs can be addressed separately. The HERMES experiment at the HERA ring at DESY (Hamburg) made pioneering contributions and first constraints to Generalized Parton Distributions (GPDs), using hard exclusive vector meson production (EVMP) and Deeply Virtual Compton Scattering (DVCS). Using a novel recoil detector, HERMES managed to measure DVCS and EVMP free of any significant background. Selected results are highlighted and discussed in this paper

    Summary and Conclusions of the First DESY Test Beam User Workshop

    No full text
    On October 5/6, 2017, DESY hosted the first DESY Test Beam User Workshop [1] which took place in Hamburg. Fifty participants from different user communities, ranging from LHC (ALICE, ATLAS, CMS, LHCb) to FAIR (CBM, PANDA), DUNE, Belle-II, future linear colliders (ILC, CLIC) and generic detector R&D presented their experiences with the DESY II Test Beam Facility, their concrete plans for the upcoming years and a first estimate of their needs for beam time in the long-term future beyond 2025. A special focus was also on additional improvements to the facility beyond its current capabilities

    Strange Hadron Spectroscopy with Secondary KL Beam in Hall D

    No full text
    Final version of the KLF Proposal [C12-19-001] approved by JLab PAC48. The intermediate version of the proposal was posted in arXiv:1707.05284 [hep-ex]. 103 pages, 52 figures, 8 tables, 324 references. Several typos were fixedWe propose to create a secondary beam of neutral kaons in Hall D at Jefferson Lab to be used with the GlueX experimental setup for strange hadron spectroscopy. The superior CEBAF electron beam will enable a flux on the order of 1×104 KL/sec1\times 10^4~K_L/sec, which exceeds the flux of that previously attained at SLAC by three orders of magnitude. The use of a deuteron target will provide first measurements ever with neutral kaons on neutrons. The experiment will measure both differential cross sections and self-analyzed polarizations of the produced Λ\Lambda, Σ\Sigma, Ξ\Xi, and Ω\Omega hyperons using the GlueX detector at the Jefferson Lab Hall D. The measurements will span CM cosθ\cos\theta from 0.95-0.95 to 0.95 in the range W = 1490 MeV to 2500 MeV. The new data will significantly constrain the partial wave analyses and reduce model-dependent uncertainties in the extraction of the properties and pole positions of the strange hyperon resonances, and establish the orbitally excited multiplets in the spectra of the Ξ\Xi and Ω\Omega hyperons. Comparison with the corresponding multiplets in the spectra of the charm and bottom hyperons will provide insight into he accuracy of QCD-based calculations over a large range of masses. The proposed facility will have a defining impact in the strange meson sector through measurements of the final state KπK\pi system up to 2 GeV invariant mass. This will allow the determination of pole positions and widths of all relevant K(Kπ)K^\ast(K\pi) SS-,PP-,DD-,FF-, and GG-wave resonances, settle the question of the existence or nonexistence of scalar meson κ/K0(700)\kappa/K_0^\ast(700) and improve the constrains on their pole parameters. Subsequently improving our knowledge of the low-lying scalar nonet in general
    corecore