7,922 research outputs found

    Factors influencing the distribution of charge in polar nanocrystals

    Get PDF
    We perform first-principles calculations of wurtzite GaAs nanorods to explore the factors determining charge distributions in polar nanostructures. We show that both the direction and magnitude of the dipole moment d\mathbf{d} of a nanorod, and its electic field, depend sensitively on how its surfaces are terminated and do not depend strongly on the spontaneous polarization of the underlying lattice. We identify two physical mechanisms by which d\mathbf{d} is controlled by the surface termination, and we show that the excess charge on the nanorod ends is not strongly localized. We discuss the implications of these results for tuning nanocrystal properties, and for their growth and assembly.Comment: Accepted for publication in Phys. Rev. B Rapid Communication

    Algorithmic aspects of disjunctive domination in graphs

    Full text link
    For a graph G=(V,E)G=(V,E), a set DVD\subseteq V is called a \emph{disjunctive dominating set} of GG if for every vertex vVDv\in V\setminus D, vv is either adjacent to a vertex of DD or has at least two vertices in DD at distance 22 from it. The cardinality of a minimum disjunctive dominating set of GG is called the \emph{disjunctive domination number} of graph GG, and is denoted by γ2d(G)\gamma_{2}^{d}(G). The \textsc{Minimum Disjunctive Domination Problem} (MDDP) is to find a disjunctive dominating set of cardinality γ2d(G)\gamma_{2}^{d}(G). Given a positive integer kk and a graph GG, the \textsc{Disjunctive Domination Decision Problem} (DDDP) is to decide whether GG has a disjunctive dominating set of cardinality at most kk. In this article, we first propose a linear time algorithm for MDDP in proper interval graphs. Next we tighten the NP-completeness of DDDP by showing that it remains NP-complete even in chordal graphs. We also propose a (ln(Δ2+Δ+2)+1)(\ln(\Delta^{2}+\Delta+2)+1)-approximation algorithm for MDDP in general graphs and prove that MDDP can not be approximated within (1ϵ)ln(V)(1-\epsilon) \ln(|V|) for any ϵ>0\epsilon>0 unless NP \subseteq DTIME(VO(loglogV))(|V|^{O(\log \log |V|)}). Finally, we show that MDDP is APX-complete for bipartite graphs with maximum degree 33

    Lifetime and Coherence of Two-Level Defects in a Josephson Junction

    Full text link
    We measure the lifetime (T1T_{1}) and coherence (T2T_{2}) of two-level defect states (TLSs) in the insulating barrier of a Josephson phase qubit and compare to the interaction strength between the two systems. We find for the average decay times a power law dependence on the corresponding interaction strengths, whereas for the average coherence times we find an optimum at intermediate coupling strengths. We explain both the lifetime and the coherence results using the standard TLS model, including dipole radiation by phonons and anti-correlated dependence of the energy parameters on environmental fluctuations.Comment: 4 pages, 4 figures and supplementary material (3 pages, 2 figures, 1 table

    Modeling of intrinsic electron and hole trapping in crystalline and amorphous ZnO

    Get PDF
    Recent advances in ultrafast liquid quenching and deposition of thin films on cold substrates make growing amorphous (a)‐ZnO films increasingly feasible. The electronic structure and electron and hole trapping properties of amorphous ZnO are predicted using density functional theory (DFT) simulations with a hybrid density functional (h‐DFT). An ensemble of fifty 324‐atom structures is employed to obtain the distribution of structural and electronic properties of a‐ZnO. The results demonstrate that electrons do not localize in a‐ZnO, but holes form deep localized states with average trapping energy of about 0.9 eV. It is also shown that dispersion at the conduction band minimum (CBM) is not affected upon amorphization, suggesting that high electron mobility should be retained. An average value of a‐ZnO band gap of 3.36 eV is calculated with no states splitting into the band gap, which accounts for no substantial detrimental effect on the optical transparency upon amorphization. These findings may have important implications for future applications of a‐ZnO as a transparent conductor and photocatalyst

    Glass Polymorphism in TIP4P/2005 Water: A Description Based on the Potential Energy Landscape Formalism

    Full text link
    The potential energy landscape (PEL) formalism is a statistical mechanical approach to describe supercooled liquids and glasses. Here we use the PEL formalism to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) using computer simulations of the TIP4P/2005 molecular model of water. We find that the properties of the PEL sampled by the system during the LDA-HDA transformation exhibit anomalous behavior. In particular, at conditions where the change in density during the LDA-HDA transformation is approximately discontinuous, reminiscent of a first-order phase transition, we find that (i) the inherent structure (IS) energy, eIS(V)e_\text{IS}(V), is a concave function of the volume, and (ii) the IS pressure, PIS(V)P_\text{IS}(V), exhibits a van der Waals-like loop. In addition, the curvature of the PEL at the IS is anomalous, a non-monotonic function of VV. In agreement with previous studies, our work suggests that conditions (i) and (ii) are necessary (but not sufficient) signatures of the PEL for the LDA-HDA transformation to be reminiscent of a first-order phase transition. We also find that one can identify two different regions of the PEL, one associated to LDA and another to HDA. Our computer simulations are performed using a wide range of compression/decompression and cooling rates. In particular, our slowest cooling rate (0.01 K/ns) is within the experimental rates employed in hyperquenching experiments to produce LDA. Interestingly, the LDA-HDA transformation pressure that we obtain at T=80T=80 K and at different rates extrapolates remarkably well to the corresponding experimental pressure.Comment: Manuscript and Supplementary Materia

    The mitochondrial unfolded protein response: Signaling from the powerhouse

    Get PDF
    Mitochondria are multifaceted and indispensable organelles required for cell performance. Accordingly, dysfunction to mitochondria can result in cellular decline and possibly the onset of disease. Cells use a variety of means to recover mitochondria and restore homeostasis, including the activation of retrograde pathways such as the mitochondrial unfolded protein response (UPRmt). In this Minireview, we will discuss how cells adapt to mitochondrial stress through UPRmt regulation. Furthermore, we will explore the current repertoire of biological functions that are associated with this essential stress-response pathway

    Observations from Space: A Unique Vantage Point for the Study of the Environment and Possible Associations with Disease Occurrence

    Get PDF
    Health providers/researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. The field of geospatial health remains in its infancy, and this program will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential. NASA will discuss the Public Health Projects developed to work with Grantees and the CDC while providing them with information on opportunities for future collaborations with NASA for future research
    corecore