9,804 research outputs found
Signatures of Galaxy-Cluster Interactions: Spiral Galaxy Rotation Curve Asymmetry, Shape, and Extent
The environmental dependencies of the characteristics of spiral galaxy
rotation curves are studied in this work. We use our large, homogeneously
collected sample of 510 cluster spiral galaxy rotation curves to test the claim
that the shape of a galaxy's rotation curve strongly depends on its location
within the cluster, and thus presumably on the strength of the local
intracluster medium and on the frequency and strength of tidal interactions
with the cluster and cluster galaxies. Our data do not corroborate such a
scenario, consistent with the fact that Tully-Fisher residuals are independent
of galaxy location within the cluster; while the average late-type spiral
galaxy shows more rise in the outer parts of its rotation curve than does the
typical early-type spiral galaxy, there is no apparent trend for either subset
with cluster environment. We also investigate as a function of cluster
environment rotation curve asymmetry and the radial distribution of H II region
tracers within galactic disks. Mild trends with projected cluster-centric
distance are observed: (i) the (normalized) radial extent of optical line
emission averaged over all spiral galaxy types shows a 4%+/-2% increase per Mpc
of galaxy-cluster core separation, and (ii) rotation curve asymmetry falls by a
factor of two between the inner and outer cluster for early-type spirals (a
negligible decrease is found for late-type spirals). Such trends are consistent
with spiral disk perturbations or even the stripping of the diffuse, outermost
gaseous regions within the disks as galaxies pass through the dense cluster
cores.Comment: 17 pages; to appear in the April 2001 Astronomical Journa
DNA DSB repair pathway choice: an orchestrated handover mechanism
DNA double strand breaks (DSBs) are potential lethal lesions but can also lead to chromosome rearrangements, a step promoting carcinogenesis. DNA non-homologous end-joining (NHEJ) is the major DSB rejoining process and occurs in all cell cycle stages. Homologous recombination (HR) can additionally function to repair irradiation-induced two-ended DSBs in G2 phase. In mammalian cells, HR predominantly uses a sister chromatid as a template for DSB repair; thus HR functions only in late S/G2 phase. Here, we review current insight into the interplay between HR and NHEJ in G2 phase. We argue that NHEJ represents the first choice pathway, repairing approximately 80% of X-ray-induced DSBs with rapid kinetics. However, a subset of DSBs undergoes end resection and repair by HR. 53BP1 restricts resection, thereby promoting NHEJ. During the switch fromNHEJ to HR, 53BP1 is repositioned to the periphery of enlarged irradiation-induced foci (IRIF) via a BRCA1-dependent process. K63-linked ubiquitin chains, which also form at IRIF, are also repositioned as well as receptor-associated protein 80 (RAP80), a ubiquitin binding protein. RAP80 repositioning requires POH1, a proteasome component. Thus, the interfacing barriers to HR, 53BP1 and RAP80 are relieved by POH1 and BRCA1, respectively. Removal of RAP80 from the IRIF core is required for loss of the ubiquitin chains and 53BP1, and for efficient replication protein A foci formation. We propose that NHEJ is used preferentially to HR because it is a compact process that does not necessitate
extensive chromatin changes in the DSB vicinity
Recommended from our members
The double peak in upwelling and heating in the tropical lower stratosphere
Abstract
The processes responsible for double-peak latitudinal structures in the time-averaged tropical lower-stratospheric upwelling, centered near 70 hPa and 20°N/S, previously noted in ERA-Interim and other reanalysis and model datasets, are considered. It is demonstrated that the structure of the wave force resolved by ERA-Interim consistently balances the angular momentum transport associated with the double peak. Analysis of the corresponding structures in diabatic heating rates from ERA-Interim indicates that the peaks arise predominantly from the meridional structure in ozone concentrations and the associated absorption of both shortwave and longwave radiation. Additional smaller contributions arise from local absorption of longwave radiation emitted from the relatively warm layers above and below, as well as from cloud-related radiative effects and nonradiative diabatic heating. The temperature at 70 hPa is slightly higher near 20°N/S than at the equator, opposite of what would be expected if the latitudinal structure in radiative heating were associated with local relaxation. It is proposed on the basis of this analysis that the primary cause of the peaks in upwelling is the externally imposed (i.e., nonrelaxational) part of the radiative heating field. The dynamical plausibility of this hypothesis is investigated in a companion paper.AM and PHi acknowledge funding support from the European Research Council through the ACCI project (grant number 267760) lead by John Pyle. PHi also acknowledges support from an NSERC postdoctoral fellowship.This is the final version of the article. It first appeared from the American Meteorological Society via http://dx.doi.org/10.1175/JAS-D-15-0293.
Recommended from our members
The response of the lower stratosphere to zonally symmetric thermal and mechanical forcing
Abstract
The response of the atmosphere to zonally symmetric applied heating and mechanical forcing is considered, allowing for the fact that the response may include a change in the wave force (or “wave drag”). A scaling argument shows that an applied zonally symmetric heating is effective in driving a steady meridional circulation provided that the wave force (required to satisfy angular momentum constraints) is sufficiently sensitive to changes in the mean flow in the sense that the ratio is large, where K is a measure of the sensitivity of the wave force; α, N, and f are the radiative damping rate, buoyancy frequency, and Coriolis parameter, respectively; and and are the horizontal and vertical length scales of the heating, respectively. Furthermore, in the “narrow heating” regime where this ratio is large, the structure of the meridional circulation response is only weakly dependent on the details of the wave force. The scaling arguments are verified by experiments in a dry dynamical circulation model. Consistent with the scaling prediction, the regime does not apply when the width of the imposed heating is increased. The narrow-heating regime is demonstrated to be relevant to the double peak in tropical lower-stratospheric upwelling considered in a companion paper, supporting the hypothesis that this feature is radiatively driven. Similar arguments are applied to show that a narrow zonally symmetric applied mechanical forcing is primarily balanced by a change in wave force. This provides an explanation for the recently identified compensation between resolved and parameterized waves in driving modeled trends in the Brewer–Dobson circulation.The authors thank Amanda Maycock for help with the radiation code and for helpful discussions. AM and PHi acknowledge funding support from the European Research Council through the ACCI project (grant number 267760) lead by John Pyle. PHi also acknowledges support from an NSERC postdoctoral fellowship. The authors are grateful to Stephan Fueglistaler and Tom Flannaghan for conversations that stimulated some of this work. We also thank Robin Hogan, Alessio Bozzo and Irina Sandu from ECMWF for their help with reproducing the longwave heating rates as well as Ulrike Langematz and Markus Kunze for the ozone climatology. We received detailed and helpful comments from three anonymous reviewers that improved this manuscript.This is the final version of the article. It first appeared from the American Meteorological Society via http://dx.doi.org/10.1175/JAS-D-15-0294.
Continuum diffusion on networks: Trees with hyperbranched trunks and fractal branches
The probability that a random walker returns to its origin for large times scales as t(-d/2), where d is the spectral dimension. We calculate d for a class of tree structures using a renormalization technique on an infinite continued fraction. We consider a wide range of homogeneous networks based on replacing the branches of a self-similar tree with arbitrary fractals and composite fractals. We also consider a new class of inhomogeneous hyperbranched trees
- …