291 research outputs found
Observations of Lunar Swirls by the Diviner Lunar Radiometer Experiment
The presence of anomalous, high albedo markings on the lunar surface has been known since the Apollo era. These features, collectively known as lunar swirls, occur on both the mare and highlands. Some swirls are associated with the antipodes of major impact basins, while all are associated with magnetic field anomalies of varying strength. Three mechanisms have been proposed for the formation of the swirls: (1) solar wind standoff due to the presence of magnetic fields, (2) micrometeoroid or comet swarms impacting and disturbing the lunar surface, revealing unweathered regolith, and (3) transport and deposition of fine-grained feldspathic material. Diviner s unique capabilities to determine silicate composition and degree of space weathering of the lunar surface, in addition to its capabilities to determine thermophysical properties from night-time temperature measurements, make it an ideal instrument to examine the swirls and help differentiate among the three proposed formation mechanisms
Probing the potential landscape inside a two-dimensional electron-gas
We report direct observations of the scattering potentials in a
two-dimensional electron-gas using electron-beam diffaction-experiments. The
diffracting objects are local density-fluctuations caused by the spatial and
charge-state distribution of the donors in the GaAs-(Al,Ga)As heterostructures.
The scatterers can be manipulated externally by sample illumination, or by
cooling the sample down under depleted conditions.Comment: 4 pages, 4 figure
Lunar Flashlight: Illuminating the Lunar South Pole
Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanentlyshadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth- Moon system
Lunar Flashlight: Illuminating the Moon's South Pole
Recent reflectance data from LRO instruments suggest water ice and other volatiles may be present on the surface in lunar permanently shadowed regions, though the detection is not yet definitive. Understanding the composition, quantity, distribution, and form of water and other volatiles associated with lunar permanently shadowed regions (PSRs) is identified as a NASA Strategic Knowledge Gap (SKG) for Human Exploration. These polar volatile deposits are also scientifically interesting, having the potential to reveal important information about the delivery of water to the Earth-Moon system
Stability of trions in strongly spin-polarized two-dimensional electron gases
Low-temperature magneto-photoluminescence studies of negatively charged
excitons (X- trions) are reported for n-type modulation-doped ZnSe/Zn(Cd,Mn)Se
quantum wells over a wide range of Fermi energy and spin-splitting. The
magnetic composition is chosen such that these magnetic two-dimensional
electron gases (2DEGs) are highly spin-polarized even at low magnetic fields,
throughout the entire range of electron densities studied (5e10 to 6.5e11
cm^-2). This spin polarization has a pronounced effect on the formation and
energy of X-, with the striking result that the trion ionization energy (the
energy separating X- from the neutral exciton) follows the temperature- and
magnetic field-tunable Fermi energy. The large Zeeman energy destabilizes X- at
the nu=1 quantum limit, beyond which a new PL peak appears and persists to 60
Tesla, suggesting the formation of spin-triplet charged excitons.Comment: 5 pages (RevTex), 4 embedded EPS figs. Submitted to PRB-R
Landau Level Crossings and Extended-State Mapping in Magnetic Two-dimensional Electron Gases
We present longitudinal and Hall magneto-resistance measurements of a
``magnetic'' two-dimensional electron gas (2DEG) formed in modulation-doped
ZnCdMnSe quantum wells. The electron spin splitting is
temperature and magnetic field dependent, resulting in striking features as
Landau levels of opposite spin cross near the Fermi level. Magnetization
measurements on the same sample probe the total density of states and Fermi
energy, allowing us to fit the transport data using a model involving extended
states centered at each Landau level and two-channel conduction for spin-up and
spin-down electrons. A mapping of the extended states over the whole quantum
Hall effect regime shows no floating of extended states as Landau levels cross
near the Fermi level.Comment: 10 pages, 4 figures, submitted to Phys. Rev.
Selecting and Certifying a Landing Site for Moonrise in South Pole-Aitken Basin
MoonRise is a New Frontiers mission concept to land in the South Pole-Aitken (SPA) basin, collect samples, and return the samples to Earth for detailed mineral, chemical, petrologic, geochronologic, and physical properties analyses to address science questions relevant to the early evolution of the Solar System and the Moon. Science associated with this mission concept is described elsewhere; here we discuss selection of sites within SPA to address science objectives using recent scientific studies (orbital spectroscopy, gravity, topography), and the use of new data (LRO) to certify safe landing sites for a robotic sample return mission such as MoonRise
Decay constants of P and D-wave heavy-light mesons
We investigate decay constants of P and D-wave heavy-light mesons within the
mock-meson approach. Numerical estimates are obtained using the relativistic
quark model. We also comment on recent calculations of heavy-light
pseudo-scalar and vector decay constants.Comment: REVTeX, 22 pages, uses epsf macro, 8 postscript figures include
Excitons and charged excitons in semiconductor quantum wells
A variational calculation of the ground-state energy of neutral excitons and
of positively and negatively charged excitons (trions) confined in a
single-quantum well is presented. We study the dependence of the correlation
energy and of the binding energy on the well width and on the hole mass. The
conditional probability distribution for positively and negatively charged
excitons is obtained, providing information on the correlation and the charge
distribution in the system. A comparison is made with available experimental
data on trion binding energies in GaAs-, ZnSe-, and CdTe-based quantum well
structures, which indicates that trions become localized with decreasing
quantum well width.Comment: 9 pages, 11 figure
- …