604 research outputs found
Superconductors with Magnetic Impurities: Instantons and Sub-gap States
When subject to a weak magnetic impurity potential, the order parameter and
quasi-particle energy gap of a bulk singlet superconductor are suppressed.
According to the conventional mean-field theory of Abrikosov and Gor'kov, the
integrity of the energy gap is maintained up to a critical concentration of
magnetic impurities. In this paper, a field theoretic approach is developed to
critically analyze the validity of the mean field theory. Using the
supersymmetry technique we find a spatially homogeneous saddle-point that
reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions
to the density of states that render the quasi-particle energy gap soft at any
non-zero magnetic impurity concentration. The sub-gap states are associated
with supersymmetry broken field configurations of the action. An analysis of
fluctuations around these configurations shows how the underlying supersymmetry
of the action is restored by zero modes. An estimate of the density of states
is given for all dimensionalities. To illustrate the universality of the
present scheme we apply the same method to study `gap fluctuations' in a normal
quantum dot coupled to a superconducting terminal. Using the same instanton
approach, we recover the universal result recently proposed by Vavilov et al.
Finally, we emphasize the universality of the present scheme for the
description of gap fluctuations in d-dimensional superconducting/normal
structures.Comment: 18 pages, 9 eps figure
Recommended from our members
Pulsed Power Accelerators at CEM-UT
An overview of four accelerator programs utilizing pulsed power is presented. The goals of each project, a description of the power supplies and launchers utilized and test results from each program are provided. The four projects presented illustrate a variety of uses for electromagnetic (EM) launchers and the potential advantages and disadvantages of four different launcher systems. Included in the paper are micrometeorite impact studies of 50 to 500 μm diameter glass beads accelerated up to 11 km/s with plasma armatures and 2.5- kg solid armature packages launched at 2.6 km/s (a record 8.1 MJ of muzzle energy). A compact rep-rateable augmented rail launcher and compulsator system weighing less than 1,100 kg is also described. Finally a skid mounted rep-rateable launcher system capable of providing 9 MJ of muzzle energy is discussed.Center for Electromechanic
Recommended from our members
Light-Weight Containment for High Energy, Rotating Machines
Developed a lightweight containment system for high-speed composite rotors. The containment device, consisting of a rotatable, composite structure, has been demonstrated to contain the high-energy release from a rotor burst event and is applicable to composite rotors for pulsed power applications. The most important aspect of this design is that the free-floating containment structure dissipates the major loads (radial, torque, and axial) encountered during the burst event, greatly reducing the loads that pass through the stator structure to its attachments. The design results in significant system-level weight savings for the entire rotating machine when compared to a system with an all-metallic containment. Of equal interest to the containment design, the experimental design and instrumentation was very challenging and resulted in significant lessons learned. This paper describes the containment system design, rotor burst test setup, instrumentation for measuring loads induced by the burst event, and a detailed explanation of the successful containment test results and conclusions.Center for Electromechanic
Microscopic theories of neutrino-^{12}C reactions
In view of the recent experiments on neutrino oscillations performed by the
LSND and KARMEN collaborations as well as of future experiments, we present new
theoretical results of the flux averaged and
cross sections. The approaches used are
charge-exchange RPA, charge-exchange RPA among quasi-particles (QRPA) and the
Shell Model. With a large-scale shell model calculation the exclusive cross
sections are in nice agreement with the experimental values for both reactions.
The inclusive cross section for coming from the decay-in-flight of
is to be compared to the experimental value
of , while the one due to
coming from the decay-at-rest of is which
agrees within experimental error bars with the measured values. The shell model
prediction for the decay-in-flight neutrino cross section is reduced compared
to the RPA one. This is mainly due to the different kind of correlations taken
into account in the calculation of the spin modes and partially due to the
shell-model configuration basis which is not large enough, as we show using
arguments based on sum-rules.Comment: 17 pages, latex, 5 figure
Theoretical study of lepton events in the atmospheric neutrino experiments at SuperK
Super-Kamiokande has reported the results for the lepton events in the
atmospheric neutrino experiment. These results have been presented for a 22.5kT
water fiducial mass on an exposure of 1489 days, and the events are divided
into sub-GeV, multi-GeV and PC events. We present a study of nuclear medium
effects in the sub-GeV energy region of atmospheric neutrino events for the
quasielastic scattering, incoherent and coherent pion production processes, as
they give the most dominant contribution to the lepton events in this energy
region. We have used the atmospheric neutrino flux given by Honda et al. These
calculations have been done in the local density approximation. We take into
account the effect of Pauli blocking, Fermi motion, Coulomb effect,
renormalization of weak transition strengths in the nuclear medium in the case
of the quasielastic reactions. The inelastic reactions leading to production of
leptons along with pions is calculated in a - dominance model by
taking into account the renormalization of properties in the nuclear
medium and the final state interaction effects of the outgoing pions with the
residual nucleus. We present the results for the lepton events obtained in our
model with and without nuclear medium effects, and compare them with the Monte
Carlo predictions used in the simulation and the experimentally observed events
reported by the Super-Kamiokande collaboration.Comment: 23 pages, 13 figure
Total prompt γ
The total prompt γ-ray energy distributions for the neutron-induced fission of 235U, 239,241Pu at incident neutron energy of 0.025 eV ‒ 100 keV, and the spontaneous fission of 252Cf were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) array in coincidence with the detection of fission fragments by a parallel-plate avalanche counter. DANCE is a highly segmented, highly efficient 4π γ-ray calorimeter. Corrections were made to the measured distribution by unfolding the two-dimension spectrum of total γ-ray energy vs multiplicity using a simulated DANCE response matrix. The mean values of the total prompt γ-ray energy, determined from the unfolded distributions, are ~ 20% higher than those derived from measurements using single γ-ray detector for all the fissile nuclei studied. This raises serious concern on the validity of the mean total prompt γ-ray energy obtained from the product of mean values for both prompt γ-ray energy and multiplicity
Supervisors' Perceptions of the Performance of Cooperative Education Employees Working in Federal Agencies
Through cooperative education programs, many public agencies employ college students part time or intermittently and groom them for future full-time employment The combination of winnowing and nurturing that occurs in these programs is believed to produce higher performing employees This study tests this hypothesis by comparing Federal supervisors' perceptions of the performance of co-op employees with those recruited from other sources Data come from the 1992 Merit Principles Survey, US Merit Systems Protection Board The results indicate that co-op employees perform at high levels, but they do not outperform other employees as a whole Next, we compare the performance ratings of Federal workers from seven other recruitment sources to see if any source is superior Some interesting findings emerge Of course, performance ratings are an incomplete indicator of an employee's value to the organization These ratings merely reflect supervisors' perceptions, and while high performance is important, agencies may wish to promote other goals in their recruitment and retention efforts such as workforce diversityYeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
A Distributed Scalable Approach to Formation Control in Multi-Robot Systems
A new algorithm for the control of formations of mobile robots is presented. Formations with a triangular lattice structure are created using distributed control rules, using only local information on each robot. The overall direction of movement of the formation is not pre-established but rather results from local interactions, giving all the robots a common, self-organized heading. Experiments were done to test the algorithm, yielding results in which robots behaved as expected, moving at a reasonable speed and maintaining the desired distances among themselves. Up to seven robots were used in real experiments and up to forty in simulation
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
- …