511 research outputs found

    Higher plant-derived nitrate intake is associated with lower odds of frailty in a cross-sectional study of community-dwelling older women

    Get PDF
    Purpose: Dietary nitrate intake is inversely related to numerous contributors towards frailty, including cardiovascular disease and poor physical function. Whether these findings extend to frailty remain unknown. We investigated if habitual nitrate intake, derived from plants or animal-based foods, was cross-sectionally associated with frailty in women. Methods: Community-dwelling older Australian women (n = 1390, mean age 75.1 ± 2.7 years) completed a validated semi-quantitative food frequency questionnaire (FFQ). Nitrate concentrations in food were obtained from international nitrate databases. We adopted the Rockwood frailty index (FI) of cumulative deficits comprising 33 variables across multiple health domains (scored 0 to 1), which predicts increased hospitalisation and mortality risk. A FI ≥ 0.25 indicated frailty. Cross-sectional associations between nitrate intake (total plant and animal nitrate, separately) and frailty were analysed using multivariable-adjusted logistic regression models (including lifestyle factors), as part of restricted cubic splines. Results: A non-linear inverse relationship was observed between total plant nitrate intake and frailty. Compared to women with the lowest plant nitrate intake (Quartile [Q]1), women with greater intakes in Q2 (OR 0.69 95%CI 0.56–0.84), Q3 (OR 0.67 95%CI 0.50–0.90) and Q4 (OR 0.66 95%CI 0.45–0.98) had lower odds for frailty. A nadir in the inverse association was observed once intakes reached ~ 64 mg/d (median Q2). No relationship was observed between total animal nitrate and frailty. Conclusion: Community-dwelling older women consuming low amounts of plant-derived nitrate were more likely to present with frailty. Consuming at least one daily serving (~ 75 g) of nitrate-rich green leafy vegetables may be beneficial in preventing frailty

    EBV T-cell immunotherapy generated by peptide selection has enhanced effector functionality compared to LCL stimulation

    Get PDF
    Adoptive immunotherapy with Epstein–Barr virus (EBV)-specific T cells is an effective treatment for relapsed or refractory EBV-induced post-transplant lymphoproliferative disorders (PTLD) with overall survival rates of up to 69%. EBV-specific T cells have been conventionally made by repeated stimulation with EBV-transformed lymphoblastoid cell lines (LCL), which act as antigen-presenting cells. However, this process is expensive, takes many months, and has practical risks associated with live virus. We have developed a peptide-based, virus-free, serum-free closed system to manufacture a bank of virus-specific T cells (VST) for clinical use. We compared these with standard LCL-derived VST using comprehensive characterization and potency assays to determine differences that might influence clinical benefits. Multi-parameter flow cytometry revealed that peptide-derived VST had an expanded central memory population and less exhaustion marker expression than LCL-derived VST. A quantitative HLA-matched allogeneic cytotoxicity assay demonstrated similar specific killing of EBV-infected targets, though peptide-derived EBV T cells had a significantly higher expression of antiviral cytokines and degranulation markers after antigen recall. High-throughput T cell receptor-beta (TCRβ) sequencing demonstrated oligoclonal repertoires, with more matches to known EBV-binding complementary determining region 3 (CDR3) sequences in peptide-derived EBV T cells. Peptide-derived products showed broader and enhanced specificities to EBV nuclear antigens (EBNAs) in both CD8 and CD4 compartments, which may improve the targeting of highly expressed latency antigens in PTLD. Importantly, peptide-based isolation and expansion allows rapid manufacture and significantly increased product yield over conventional LCL-based approaches.</p

    A Re-examination of the Portevin-Le Chatelier Effect in Alloy 718 in Connection with Oxidation-Assisted Intergranular Cracking

    Get PDF
    In Alloy 718, a sharp transition exists in the fracture path changing from an intergranular brittle mode to a transgranular ductile mode which is associated with a transition of flow behavior from smooth in the dynamic strain aging regime to a serrated one in the Portevin-Le Chatelier (PLC) regime. In order to better understand both deformation and rupture behavior, PLC phenomenon in a precipitation-hardened nickel-base superalloy was carefully investigated in a wide range of temperatures [573 K to 973 K (300°C to 700°C)] and strain rates (109^-5 to 3.2910^-2 s^-1 ). Distinction was made between two PLC domains characterized by different evolutions of the critical strain to the onset of the first serration namely normal and inverse behavior. The apparent activation energies associated with both domains were determined using different methods. Results showed that normal and inverse behavior domains are related to dynamic interaction of dislocations with, respectively, interstitial and substitutional solutes atoms. This analysis confirms that normal PLC regime may be associated to the diffusion of carbon atoms, whereas the substitutional species involves in the inverse regime is discussed with an emphasis on the role of Nb and Mo

    Circular Permutation in the Ω-Loop of TEM-1 β-Lactamase Results in Improved Activity and Altered Substrate Specificity

    Get PDF
    Generating diverse protein libraries that contain improved variants at a sufficiently high frequency is critical for improving the properties of proteins using directed evolution. Many studies have illustrated how random mutagenesis, cassette mutagenesis, DNA shuffling and similar approaches are effective diversity generating methods for directed evolution. Very few studies have explored random circular permutation, the intramolecular relocation of the N- and C-termini of a protein, as a diversity-generating step for directed evolution. We subjected a library of random circular permutations of TEM-1 β-lactamase to selections on increasing concentrations of a variety of β-lactam antibiotics including cefotaxime. We identified two circularly permuted variants that conferred elevated resistance to cefotaxime but decreased resistance to other antibiotics. These variants were circularly permuted in the Ω-loop proximal to the active site. Remarkably, one variant was circularly permuted such that the key catalytic residue Glu166 was located at the N-terminus of the mature protein

    Safety profile of autologous macrophage therapy for liver cirrhosis

    Get PDF
    This work was supported by a Medical Research Council UK grant (Biomedical Catalyst Major Awards Committee; reference MR/M007588/1) to S.J. Forbes. We thank Z.M. Younossi (Center for Outcomes Research in Liver Diseases, Washington, DC, USA) for academic use of the CLDQ instrument and L.J. Fallowfield (Sussex Health Outcomes Research & Education in Cancer (SHORE-C), University of Sussex, UK) for advice about health-related quality of life assessment.Peer reviewedPostprintPostprintPostprintPostprin
    corecore