10 research outputs found

    Early effects of kidney transplantation on the heart - A cardiac magnetic resonance multi-parametric study

    Get PDF
    Increased native myocardial T1 times in chronic kidney disease (CKD) may be due to diffuse interstitial myocardial fibrosis (DIF) or due to interstitial edema/inflammation. Concerns relating to nephrogenic systemic fibrosis with gadolinium-based contrast agents (GBCA) limit their use in end-stage kidney disease (ESKD) to measure extracellular volume (ECV) and characterise myocardial fibrosis. This study aimed to examine stability of myocardial T1 and T2 times before, and within 2 months after kidney transplantation; a time frame when volume status normalises but myocardial remodelling is unlikely to have occurred, and to compare these with ECV using GBCA after transplantation. Twenty-four patients with ESKD underwent serial cardiovascular magnetic resonance imaging, including T1 and T2 mapping. GBCA was administered on follow-up provided eGFR was N30 ml/min/1.73 m2 . Eighteen age- and sex-matched controls were studied at one timepoint. ECV (ECV 28 ± 2% vs. 24 ± 2%, p = 0.001) and T2 times were higher in ESKD compared to controls. After transplantation, septal T1 times increased (MOLLI 985 ms ± 25 vs. 1002 ms ± 30, p = 0.014; ShMOLLI 974 ms ± 39 vs. 992 ms ± 33, p = 0.113), LV volumes reduced (LVEDvol indexed 79 ± 24 vs. 63 ± 20 ml/m2 , p = 0.005) but LV mass was unchanged (LV mass index 89 g/m2 ± 38 to 83 g/m2 ± 23, p = 0.141). T2 times did not change after transplantation. Both ECV and myocardial T1 times are elevated in ESKD, supporting the theory that elevated T1 times are due to DIF, although a contribution from myocardial edema cannot be fully excluded. The lack of any fall in T1 or T2 times after transplantation suggests that myocardial T1 times are a stable measure of DIF in CKD

    Defining Myocardial Abnormalities Across the Stages of Chronic Kidney Disease: A Cardiac Magnetic Resonance Imaging Study.

    No full text
    OBJECTIVES A proof of concept cross-sectional study investigating changes in myocardial abnormalities across stages of chronic kidney disease (CKD). Characterizing noninvasive markers of myocardial fibrosis on cardiac magnetic resonance, echocardiography, and correlating with biomarkers of fibrosis, myocardial injury, and functional correlates including exercise tolerance. BACKGROUND CKD is associated with an increased risk of cardiovascular death. Much of the excess mortality is attributed to uremic cardiomyopathy, defined by increased left ventricular hypertrophy, myocardial dysfunction, and fibrosis. The prevalence of these abnormalities across stages of CKD and their impact on cardiovascular performance is unknown. METHODS A total of 134 nondiabetic, pre-dialysis subjects with CKD stages 2 to 5 without myocardial ischemia underwent cardiac magnetic resonance (1.5-T) including; T mapping (biomarker of diffuse fibrosis), T mapping (edema), late gadolinium enhancement, and assessment of aortic distensibility. Serum biomarkers including collagen turnover (P1NP, P3NP), troponin T, and N-terminal pro-B-type natriuretic peptide were measured. Cardiovascular performance was quantified by bicycle cardiopulmonary exercise testing and echocardiography. RESULTS Native myocardial T times increased incrementally from stage 2 to 5 (966 ± 21 ms vs. 994 ± 33 ms; p < 0.001), independent of hypertension and aortic distensibility. Left atrial volume, E/e', N-terminal pro-B-type natriuretic peptide, P1NP, and P3NP increased with CKD stage (p < 0.05), while effort tolerance (% predicted VOPeak, %VOVT) decreased (p < 0.001). In multivariable linear regression models, estimated glomerular filtration rate was the strongest predictor of native myocardial T time (p < 0.001). Native myocardial T time, left atrial dilatation, and high-sensitivity troponin T were independent predictors of % predicted VOPeak (p < 0.001). CONCLUSIONS Imaging and serum biomarkers of myocardial fibrosis increase with advancing CKD independent of effects of left ventricular afterload and might be a key intermediary in the development of uremic cardiomyopathy. Further studies are needed to determine whether these changes lead to the increased rates of heart failure and death in CKD. (Left Ventricular Fibrosis in Chronic Kidney Disease [FibroCKD]; NCT03176862)
    corecore