2 research outputs found

    A POROUS MEDIA APPROACH FOR NUMERICAL OPTIMISATION OF THERMAL WHEEL

    Get PDF
    The experimental investigations of rotating heat exchangers are usually too costly and provide limited understanding for the phenomena of heat and fluid flow within them; hence, a less expensive and more comprehensive method is required to investigate what can affect their overall performance. In the current study, a porous media concept is presented as an alternative way to numerically analyse the fluid flow and heat transport through a rotary thermal regenerator. An aluminum core formed of multi-packed square passages is simulated as a porous medium of an orthotropic porosity in order to allow the counter-flowing streams to flow in a way similar to that inside the regenerator core. The geometric properties of the core were transformed into the conventional porous media parameters such as the permeability and inertial coefficient based on empirical equations; so, the core has been dealt with as a porous medium of known features. Fluid and solid phases are assumed to be in a local thermal non-equilibrium state with each other. A commercial CFD code "STAR CCM+" was used to solve the current problem numerically, where heat is allowed to be exchanged between the two phases and tracked by creating a heat exchanger interface in the core region. The results are presented by means of overall thermal effectiveness, pressure drop, and coefficient of performance COP. Using porous media approach has been found to be sufficient to simulate the current problem, where the currently computed data were found to deviate by up to 2.7% only from the corresponding analytical and experimental data. The data obtained reveal an obvious impact of the core geometrical parameters on both the heat restored and pressure loss; and hence, the overall efficiency of the regenerator system

    Modeling Two Phase Flow Heat Exchangers for Next Generation Aircraft

    Get PDF
    Two-phase heat exchangers offer the potential of significant energy transfer by taking advantage of the latent heat of vaporization as the working fluid changes phase. Unfortunately, the flow physics of the phase change process is very complex and there are significant gaps in the fundamental knowledge of how several key parameters are affected by the phase change process. Therefore, an initial investigation modeling a two-phase flow heat exchanger has been accomplished. Many key assumptions have been defined which are critical to modeling two-phase flows. This research lays an initial foundation on which further investigations can build upon. Two-phase heat exchangers will be a critical enabling technology for several key aerospace advancements in the 21st century. In this research, modeling two- phase flow heat exchangers to be used in modeling of NASA\u27s next generation aircraft (N3- X) is accomplished. The heat exchanger model, which could be a condenser or an evaporator, currently accommodates two working fluids; kerosene (jet fuel) and a refrigerant (R134a). The primary goal is to obtain a dynamic, robust model by using numerical simulation tools (MATLAB/ SIMULINK) which can simulate the system efficiently and would be used in the conceptual aircraft (N3-X) model. The final goal of this project is to investigate the influence of pressure and enthalpy perturbations on the system. In other words, how quickly this system responds to change to perturbations, therefore the model will be transient. Two examples are used for demonstration of the transient response of a two- phase heat exchanger to a perturbation in pressure and enthalpy. Initially, pressure perturbation variation effects on how the quality of R134a effects the magnitude of the two- phase flow heat transfer coefficient, therefore the two- phase heat transfer rate calculated. This changing pressure approach used to provide a rapid thermal response to a rapid thermal load variation. Other conventional thermal methods (decreasing the temperature of the cold fluid or increasing the mass flow rate) results in slower response times than changing the pressure. For this analysis, a sample time of 0.000001 seconds was used. In addition, an enthalpy perturbation was investigated. Since, changing pressure suddenly from higher value (650 kPa) to the lower value (555 kPa) is not a real, physical scenario in life, the pressure change with transfer function would be employed to transform the system into first order system with two different time constants. Eventually, the time constant of the system plays a significant role in obtaining a quicker response
    corecore