396 research outputs found

    Multiband superconductivity in NbSe_2 from heat transport

    Full text link
    The thermal conductivity of the layered s-wave superconductor NbSe_2 was measured down to T_c/100 throughout the vortex state. With increasing field, we identify two regimes: one with localized states at fields very near H_c1 and one with highly delocalized quasiparticle excitations at higher fields. The two associated length scales are most naturally explained as multi-band superconductivity, with distinct small and large superconducting gaps on different sheets of the Fermi surface.Comment: 2 pages, 2 figures, submitted to M2S-Rio 2003 Proceeding

    Reply to ``Comment on `Magnetic field effects on neutron diffraction in the antiferromagnetic phase of UPt3UPt_3'''

    Get PDF
    Fak, van Dijk and Wills (FDW) question our interpretation of elastic neutron-scattering experiments in the antiferromagnetic phase of UPt_3. They state that our analysis is incorrect because we average over magnetic structures that are disallowed by symmetry. We disagree with FDW and reply to their criticism. FDW also point out that we have mistaken the magnetic field direction in the experiment reported by N. H. van Dijk et al. [Phys. Rev. B 58, 3186 (1998)]. We correct this error and note that our previous conclusion is also valid for the correct field orientation.Comment: 3 page

    Comment on "Magnetic field effects on neutron diffraction in the antiferromagnetic phase of UPt3"

    Full text link
    Moreno and Sauls [Phys. Rev. B 63, 024419 (2000)] have recently tried to reanalyze earlier neutron scattering studies of the antiferromagnetic order in UPt3 with a magnetic field applied in the basal plane. In their calculation of the magnetic Bragg peak intensities, they perform an average over different magnetic structures belonging to distinct symmetry representations. This is incorrect. In addition, they have mistaken the magnetic field direction in one of the experiments, hence invalidating their conclusions concerning the experimental results.Comment: Revised 5 June 2001: Added group theory analysis and modified discussion of S and K domain

    Magnetic Coherence in Cuprate Superconductors

    Full text link
    Recent inelastic neutron scattering (INS) experiments on La2x_{2-x}Srx_xCuO4_4 observed a {\it magnetic coherence effect}, i.e., strong frequency and momentum dependent changes of the spin susceptibility, χ\chi'', in the superconducting phase. We show that this effect is a direct consequence of changes in the damping of incommensurate antiferromagnetic spin fluctuations due to the appearance of a d-wave gap in the fermionic spectrum. Our theoretical results provide a quantitative explanation for the weak momentum dependence of the observed spin-gap. Moreover, we predict {\bf (a)} a Fermi surface in La2x_{2-x}Srx_xCuO4_4 which is closed around (π,π)(\pi,\pi) up to optimal doping, and {\bf (b)} similar changes in χ\chi'' for all cuprates with an incommensurate magnetic response.Comment: 5 pages, 4 figures, Fig.3 is in colo

    Magnetic Collective Mode Dispersion in High Temperature Superconductors

    Full text link
    Recent neutron scattering experiments in the superconducting state of YBCO have been interpreted in terms of a magnetic collective mode whose dispersion relative to the commensurate wavevector has a curvature opposite in sign to a conventional magnon dispersion. The purpose of this article is to demonstrate that simple linear response calculations are in support of a collective mode interpretation, and to explain why the dispersion has the curvature it does.Comment: 3 pages, revtex, 4 encapsulated postscript figure

    Non-Fermi liquid regime of a doped Mott insulator

    Full text link
    We study the doping of a Mott insulator in the presence of quenched frustrating disorder in the magnetic exchange. A low doping regime δ<J/t\delta<J/t is found, in which the quasiparticle coherent scale is low : ϵF=J(δ/δ)2\epsilon_F^* = J (\delta/\delta^*)^2 with δ=J/t\delta^*=J/t (the ratio of typical exchange to hopping). In the ``quantum critical regime'' ϵF<T<J\epsilon_F^*<T<J, several physical quantities display Marginal Fermi Liquid behaviour : NMR relaxation time 1/T1const.1/T_1\sim const., resistivity ρdc(T)T\rho_{dc}(T) \propto T, optical lifetime \tau_{opt}^{-1}\propto \omega/\ln(\omega/\epstar) and response functions obey ω/T\omega/T scaling, e.g. Jqχ(q,ω)tanh(ω/2T)J\sum_q \chi''(q,\omega) \propto \tanh (\omega/2T). In contrast, single-electron properties display stronger deviations from Fermi liquid theory in this regime with a ω\sqrt{\omega} dependence of the inverse single-particle lifetime and a 1/ω1/\sqrt{\omega} decay of the photoemission intensity. On the basis of this model and of various experimental evidence, it is argued that the proximity of a quantum critical point separating a glassy Mott-Anderson insulator from a metallic ground-state is an important ingredient in the physics of the normal state of cuprate superconductors (particularly the Zn-doped materials). In this picture the corresponding quantum critical regime is a ``slushy'' state of spins and holes with slow spin and charge dynamics responsible for the anomalous properties of the normal state.Comment: 40 pages, RevTeX, including 13 figures in EPS. v2 : minor changes, some references adde

    Various series expansions for the bilayer S=1/2 Heisenberg antiferromagnet

    Full text link
    Various series expansions have been developed for the two-layer, S=1/2, square lattice Heisenberg antiferromagnet. High temperature expansions are used to calculate the temperature dependence of the susceptibility and specific heat. At T=0, Ising expansions are used to study the properties of the N\'{e}el-ordered phase, while dimer expansions are used to calculate the ground-state properties and excitation spectra of the magnetically disordered phase. The antiferromagnetic order-disorder transition point is determined to be (J2/J1)c=2.537(5)(J_2/J_1)_c=2.537(5). Quantities computed include the staggered magnetization, the susceptibility, the triplet spin-wave excitation spectra, the spin-wave velocity, and the spin-wave stiffness. We also estimates that the ratio of the intra- and inter-layer exchange constants to be J2/J10.07J_2/J_1\simeq 0.07 for cuprate superconductor YBa2Cu3O6.2YBa_2Cu_3O_{6.2}.Comment: RevTeX, 9 figure

    Quantum Communication in Rindler Spacetime

    Full text link
    A state that an inertial observer in Minkowski space perceives to be the vacuum will appear to an accelerating observer to be a thermal bath of radiation. We study the impact of this Davies-Fulling-Unruh noise on communication, particularly quantum communication from an inertial sender to an accelerating observer and private communication between two inertial observers in the presence of an accelerating eavesdropper. In both cases, we establish compact, tractable formulas for the associated communication capacities assuming encodings that allow a single excitation in one of a fixed number of modes per use of the communications channel. Our contributions include a rigorous presentation of the general theory of the private quantum capacity as well as a detailed analysis of the structure of these channels, including their group-theoretic properties and a proof that they are conjugate degradable. Connections between the Unruh channel and optical amplifiers are also discussed.Comment: v3: 44 pages, accepted in Communications in Mathematical Physic

    Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet

    Full text link
    We examine the spin-SS quantum Heisenberg magnet with Gaussian-random, infinite-range exchange interactions. The quantum-disordered phase is accessed by generalizing to SU(M)SU(M) symmetry and studying the large MM limit. For large SS the ground state is a spin-glass, while quantum fluctuations produce a spin-fluid state for small SS. The spin-fluid phase is found to be generically gapless - the average, zero temperature, local dynamic spin-susceptibility obeys \bar{\chi} (\omega ) \sim \log(1/|\omega|) + i (\pi/2) \mbox{sgn} (\omega) at low frequencies. This form is identical to the phenomenological `marginal' spectrum proposed by Varma {\em et. al.\/} for the doped cuprates.Comment: 13 pages, REVTEX, 2 figures available by request from [email protected]

    Surface superconductivity and order parameter suppression in UPt3_3

    Full text link
    We show that a recent measurement of surface superconductivity in UPt3_3 (Keller {\it et. al.}, Phys. Rev. Lett. {\bf 73}, 2364 (1994)) can be understood if the superconducting pair wavefunction is suppressed anisotropically at a vacuum to superconductor interface. Further measurements of surface superconductivity can distinguish between the various phenomenological models of superconducting UPt3_3.Comment: 4 pages, latex, 2 Figures available upon request ([email protected]
    corecore