7,947 research outputs found

    High-Frequency Spin Waves in YBa2Cu3O6.15

    Get PDF
    Pulsed neutron spectroscopy is used to make absolute measurements of the dynamic magnetic susceptibility of insulating YBa2Cu3O6.15. Acoustic and optical modes, derived from in- and out-of-phase oscillation of spins in adjacent CuO2 planes, dominate the spectra and are observed up to 250 meV. The optical modes appear first at 74 meV. Linear-spin-wave theory gives an excellent description of the data and yields intra- and inter-layer exchange constants of J_parallel =125 meV and J_perp = 11 meV respectively and a spin-wave intensity renormalization Z_chi = 0.4.Comment: postscript, 11 pages, 4 figures, Fig.2 fixe

    A Comparison of the High-Frequency Magnetic Fluctuations in Insulating and Superconducting La2-xSrxCuO4

    Full text link
    Inelastic neutron scattering performed at a spallation source is used to make absolute measurements of the dynamic susceptibility of insulating La2CuO4 and superconducting La2-xSrxCuO4 over the energy range 15<EN<350 meV. The effect of Sr doping on the magnetic excitations is to cause a large broadening in wavevector and a substantial change in the spectrum of the local spin fluctuations. Comparison of the two compositions reveals a new energy scale of 22 meV in La1.86Sr0.14CuO4.Comment: RevTex, 7 Pages, 4 postscript figure

    No Evidence for Orbital Loop Currents in Charge Ordered YBa2_2Cu3_3O6+x_{6+x} from Polarized Neutron Diffraction

    Get PDF
    It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding orbital moments in two samples of underdoped YBa2_2Cu3_3O6+x_{6+x} with doping levels p=0.104p=0.104 and 0.123. In contrast to some other reports using polarized neutrons, but in agreement with nuclear magnetic resonance and muon spin rotation measurements, we find no evidence for the appearance of magnetic order below 300 K. Thus, our experiment suggests that such order is not an intrinsic property of high-quality cuprate superconductor single crystals. Our results provide an upper bound for a possible orbital loop moment which depends on the pattern of currents within the unit cell. For example, for the CC-θII\theta_{II} pattern proposed by Varma, we find that the ordered moment per current loop is less than 0.013 μB\mu_B for p=0.104p=0.104.Comment: Comments in arXiv:1710.08173v1 fully addresse

    Relativistically covariant state-dependent cloning of photons

    Full text link
    The influence of the relativistic covariance requirement on the optimality of the symmetric state-dependent 1 -> 2 cloning machine is studied. Namely, given a photonic qubit whose basis is formed from the momentum-helicity eigenstates, the change to the optimal cloning fidelity is calculated taking into account the Lorentz covariance unitarily represented by Wigner's little group. To pinpoint some of the interesting results, we found states for which the optimal fidelity of the cloning process drops to 2/3 which corresponds to the fidelity of the optimal classical cloner. Also, an implication for the security of the BB84 protocol is analyzed.Comment: corrected, rewritten and accepted in PR

    A neutron scattering study of the interplay between structure and magnetism in Ba(Fe1−x_{1-x}Cox_{x})2_2As2_2

    Full text link
    Single crystal neutron diffraction is used to investigate the magnetic and structural phase diagram of the electron doped superconductor Ba(Fe1−x_{1-x}Cox_x)2_2As2_2. Heat capacity and resistivity measurements have demonstrated that Co doping this system splits the combined antiferromagnetic and structural transition present in BaFe2_2As2_2 into two distinct transitions. For xx=0.025, we find that the upper transition is between the high-temperature tetragonal and low-temperature orthorhombic structures with (TTO=99±0.5T_{\mathrm{TO}}=99 \pm 0.5 K) and the antiferromagnetic transition occurs at TAF=93±0.5T_{\mathrm{AF}}=93 \pm 0.5 K. We find that doping rapidly suppresses the antiferromagnetism, with antiferromagnetic order disappearing at x≈0.055x \approx 0.055. However, there is a region of co-existence of antiferromagnetism and superconductivity. The effect of the antiferromagnetic transition can be seen in the temperature dependence of the structural Bragg peaks from both neutron scattering and x-ray diffraction. We infer from this that there is strong coupling between the antiferromagnetism and the crystal lattice

    Continuous variable private quantum channel

    Full text link
    In this paper we introduce the concept of quantum private channel within the continuous variables framework (CVPQC) and investigate its properties. In terms of CVPQC we naturally define a "maximally" mixed state in phase space together with its explicit construction and show that for increasing number of encryption operations (which sets the length of a shared key between Alice and Bob) the encrypted state is arbitrarily close to the maximally mixed state in the sense of the Hilbert-Schmidt distance. We bring the exact solution for the distance dependence and give also a rough estimate of the necessary number of bits of the shared secret key (i.e. how much classical resources are needed for an approximate encryption of a generally unknown continuous-variable state). The definition of the CVPQC is analyzed from the Holevo bound point of view which determines an upper bound of information about an incoming state an eavesdropper is able to get from his optimal measurement.Comment: upper bound on information Eve can get was revised and substantially lowered (chapter IV), part of chapter III rewritten, several typos correcte
    • …
    corecore