9,778 research outputs found
On the Distributed Compression of Quantum Information
The problem of distributed compression for correlated quantum sources is considered. The classical version of this problem was solved by Slepian and Wolf, who showed that distributed compression could take full advantage of redundancy in the local sources created by the presence of correlations. Here it is shown that, in general, this is not the case for quantum sources, by proving a lower bound on the rate sum for irreducible sources of product states which is stronger than the one given by a naive application of Slepian–Wolf. Nonetheless, strategies taking advantage of correlation do exist for some special classes of quantum sources. For example, Devetak and Winter demonstrated the existence of such a strategy when one of the sources is classical. Optimal nontrivial strategies for a different extreme, sources of Bell states, are presented here. In addition, it is explained how distributed compression is connected to other problems in quantum information theory, including information-disturbance questions, entanglement distillation and quantum error correction
LANDSAT application of remote sensing to shoreline-form analysis
The author has identified the following significant results. LANDSAT imagery of the southern end of Assateague Island, Virginia, was enlarged to 1:80,000 and compared with high altitude (1:130,000) and low altitude (1:24,000) aerial photography in an attempt to quantify change in land area over a nine month period. Change in area and configuration was found with LANDSAT and low altitude photography. Change in configuration, but no change in area was found with high altitude photography. Due to tidal differences at time of image obtention and lack of baseline data, the accuracy of the LANDSAT measurements could not be determined. They were consistent with the measurements from the low altitude photography
Genome-wide screen for genes involved in Caenorhabditis elegans developmentally timed sleep
In Caenorhabditis elegans, Notch signaling regulates developmentally timed sleep during the transition from L4 larval stage to adulthood (L4/A) . To identify core sleep pathways and to find genes acting downstream of Notch signaling, we undertook the first genome-wide, classical genetic screen focused on C. elegans developmentally timed sleep. To increase screen efficiency, we first looked for mutations that suppressed inappropriate anachronistic sleep in adult hsp::osm-11 animals overexpressing the Notch coligand OSM-11 after heat shock. We retained suppressor lines that also had defects in L4/A developmentally timed sleep, without heat shock overexpression of the Notch coligand. Sixteen suppressor lines with defects in developmentally timed sleep were identified. One line carried a new allele of goa-1; loss of GOA-1 Gαo decreased C. elegans sleep. Another line carried a new allele of gpb-2, encoding a Gβ5 protein; Gβ5 proteins have not been previously implicated in sleep. In other scenarios, Gβ5 GPB-2 acts with regulators of G protein signaling (RGS proteins) EAT-16 and EGL-10 to terminate either EGL-30 Gαq signaling or GOA-1 Gαo signaling, respectively. We found that loss of Gβ5 GPB-2 or RGS EAT-16 decreased L4/A sleep. By contrast, EGL-10 loss had no impact. Instead, loss of RGS-1 and RGS-2 increased sleep. Combined, our results suggest that, in the context of L4/A sleep, GPB-2 predominantly acts with EAT-16 RGS to inhibit EGL-30 Gαq signaling. These results confirm the importance of G protein signaling in sleep and demonstrate that these core sleep pathways function genetically downstream of the Notch signaling events promoting sleep
Entropy and Entanglement in Quantum Ground States
We consider the relationship between correlations and entanglement in gapped
quantum systems, with application to matrix product state representations. We
prove that there exist gapped one-dimensional local Hamiltonians such that the
entropy is exponentially large in the correlation length, and we present strong
evidence supporting a conjecture that there exist such systems with arbitrarily
large entropy. However, we then show that, under an assumption on the density
of states which is believed to be satisfied by many physical systems such as
the fractional quantum Hall effect, that an efficient matrix product state
representation of the ground state exists in any dimension. Finally, we comment
on the implications for numerical simulation.Comment: 7 pages, no figure
Sonic boom simulation by means of low-pressure sources
Sonic boom simulation by low pressure source
Black holes as mirrors: quantum information in random subsystems
We study information retrieval from evaporating black holes, assuming that
the internal dynamics of a black hole is unitary and rapidly mixing, and
assuming that the retriever has unlimited control over the emitted Hawking
radiation. If the evaporation of the black hole has already proceeded past the
"half-way" point, where half of the initial entropy has been radiated away,
then additional quantum information deposited in the black hole is revealed in
the Hawking radiation very rapidly. Information deposited prior to the half-way
point remains concealed until the half-way point, and then emerges quickly.
These conclusions hold because typical local quantum circuits are efficient
encoders for quantum error-correcting codes that nearly achieve the capacity of
the quantum erasure channel. Our estimate of a black hole's information
retention time, based on speculative dynamical assumptions, is just barely
compatible with the black hole complementarity hypothesis.Comment: 18 pages, 2 figures. (v2): discussion of decoding complexity
clarifie
High-Frequency Spin Waves in YBa2Cu3O6.15
Pulsed neutron spectroscopy is used to make absolute measurements of the
dynamic magnetic susceptibility of insulating YBa2Cu3O6.15. Acoustic and
optical modes, derived from in- and out-of-phase oscillation of spins in
adjacent CuO2 planes, dominate the spectra and are observed up to 250 meV. The
optical modes appear first at 74 meV. Linear-spin-wave theory gives an
excellent description of the data and yields intra- and inter-layer exchange
constants of J_parallel =125 meV and J_perp = 11 meV respectively and a
spin-wave intensity renormalization Z_chi = 0.4.Comment: postscript, 11 pages, 4 figures, Fig.2 fixe
Possibility, Impossibility and Cheat-Sensitivity of Quantum Bit String Commitment
Unconditionally secure non-relativistic bit commitment is known to be
impossible in both the classical and the quantum worlds. But when committing to
a string of n bits at once, how far can we stretch the quantum limits? In this
paper, we introduce a framework for quantum schemes where Alice commits a
string of n bits to Bob in such a way that she can only cheat on a bits and Bob
can learn at most b bits of information before the reveal phase. Our results
are two-fold: we show by an explicit construction that in the traditional
approach, where the reveal and guess probabilities form the security criteria,
no good schemes can exist: a+b is at least n. If, however, we use a more
liberal criterion of security, the accessible information, we construct schemes
where a=4log n+O(1) and b=4, which is impossible classically. We furthermore
present a cheat-sensitive quantum bit string commitment protocol for which we
give an explicit tradeoff between Bob's ability to gain information about the
committed string, and the probability of him being detected cheating.Comment: 10 pages, RevTex, 2 figure. v2: title change, cheat-sensitivity adde
Recommended from our members
Shoot yield drives phosphorus use efficiency in Brassica oleracea and correlates with root architecture traits
The environmental and financial costs of using inorganic phosphate fertilizers to maintain crop yield and quality are high. Breeding crops that acquire and use phosphorus (P) more efficiently could reduce these costs. The variation in shoot P concentration (shoot-P) and various measures of P use efficiency (PUE) were quantified among 355 Brassica oleracea L. accessions, 74 current commercial cultivars, and 90 doubled haploid (DH) mapping lines from a reference genetic mapping population. Accessions were grown at two or more external P concentrations in glasshouse experiments; commercial and DH accessions were also grown in replicated field experiments. Within the substantial species-wide diversity observed for shoot-P and various measures of PUE in B. oleracea, current commercial cultivars have greater PUE than would be expected by chance. This may be a consequence of breeding for increased yield, which is a significant component of most measures of PUE, or early establishment. Root development and architecture correlate with PUE; in particular, lateral root number, length, and growth rate. Significant quantitative trait loci associated with shoot-P and PUE occur on chromosomes C3 and C7. These data provide information to initiate breeding programmes to improve PUE in B. oleracea
A neutron scattering study of the interplay between structure and magnetism in Ba(FeCo)As
Single crystal neutron diffraction is used to investigate the magnetic and
structural phase diagram of the electron doped superconductor
Ba(FeCo)As. Heat capacity and resistivity measurements have
demonstrated that Co doping this system splits the combined antiferromagnetic
and structural transition present in BaFeAs into two distinct
transitions. For =0.025, we find that the upper transition is between the
high-temperature tetragonal and low-temperature orthorhombic structures with
( K) and the antiferromagnetic transition occurs at
K. We find that doping rapidly suppresses the
antiferromagnetism, with antiferromagnetic order disappearing at . However, there is a region of co-existence of antiferromagnetism and
superconductivity. The effect of the antiferromagnetic transition can be seen
in the temperature dependence of the structural Bragg peaks from both neutron
scattering and x-ray diffraction. We infer from this that there is strong
coupling between the antiferromagnetism and the crystal lattice
- …