11,025 research outputs found
Mars spacecraft power system development Interim report
Modified Mariner power system design for Mars mission
Superdense coding of quantum states
We describe a method to non-obliviously communicate a 2l-qubit quantum state
by physically transmitting l+o(l) qubits of communication, and by consuming l
ebits of entanglement and some shared random bits. In the non-oblivious
scenario, the sender has a classical description of the state to be
communicated. Our method can be used to communicate states that are pure or
entangled with the sender's system; l+o(l) and 3l+o(l) shared random bits are
sufficient respectively.Comment: 5 pages, revtex
Modeling and Analysis of Power Processing Systems
The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems
Convergence Conditions for Random Quantum Circuits
Efficient methods for generating pseudo-randomly distributed unitary
operators are needed for the practical application of Haar distributed random
operators in quantum communication and noise estimation protocols. We develop a
theoretical framework for analyzing pseudo-random ensembles generated through a
random circuit composition. We prove that the measure over random circuits
converges exponentially (with increasing circuit length) to the uniform (Haar)
measure on the unitary group and describe how the rate of convergence may be
calculated for specific applications.Comment: 4 pages (revtex), comments welcome. v2: reference added, title
changed; v3: published version, minor changes, references update
Simulating adiabatic evolution of gapped spin systems
We show that adiabatic evolution of a low-dimensional lattice of quantum
spins with a spectral gap can be simulated efficiently. In particular, we show
that as long as the spectral gap \Delta E between the ground state and the
first excited state is any constant independent of n, the total number of
spins, then the ground-state expectation values of local operators, such as
correlation functions, can be computed using polynomial space and time
resources. Our results also imply that the local ground-state properties of any
two spin models in the same quantum phase can be efficiently obtained from each
other. A consequence of these results is that adiabatic quantum algorithms can
be simulated efficiently if the spectral gap doesn't scale with n. The
simulation method we describe takes place in the Heisenberg picture and does
not make use of the finitely correlated state/matrix product state formalism.Comment: 13 pages, 2 figures, minor change
High-Frequency Spin Waves in YBa2Cu3O6.15
Pulsed neutron spectroscopy is used to make absolute measurements of the
dynamic magnetic susceptibility of insulating YBa2Cu3O6.15. Acoustic and
optical modes, derived from in- and out-of-phase oscillation of spins in
adjacent CuO2 planes, dominate the spectra and are observed up to 250 meV. The
optical modes appear first at 74 meV. Linear-spin-wave theory gives an
excellent description of the data and yields intra- and inter-layer exchange
constants of J_parallel =125 meV and J_perp = 11 meV respectively and a
spin-wave intensity renormalization Z_chi = 0.4.Comment: postscript, 11 pages, 4 figures, Fig.2 fixe
Exceptional Canadian contributions to research on cognitive vulnerability to depression.
For more than four decades, Canadian psychologists have made significant contributions to the understanding of cognitive vulnerability to depression. This article highlights some of these exceptional contributions and the important roles Canadian scientists have played in enhancing our understanding of the cognitive products (e.g., dysfunctional attitudes), cognitive operations/processes (e.g., attention, encoding, and memory biases), and cognitive structures (i.e., cognitive organization) involved in depression. Following this review, we discuss research that has integrated cognitive vulnerability with other risk factors for depression, address some important measurement issues in cognitive vulnerability research, and highlight directions for future research. (PsycInfo Database Record (c) 2022 APA, all rights reserved
Black holes as mirrors: quantum information in random subsystems
We study information retrieval from evaporating black holes, assuming that
the internal dynamics of a black hole is unitary and rapidly mixing, and
assuming that the retriever has unlimited control over the emitted Hawking
radiation. If the evaporation of the black hole has already proceeded past the
"half-way" point, where half of the initial entropy has been radiated away,
then additional quantum information deposited in the black hole is revealed in
the Hawking radiation very rapidly. Information deposited prior to the half-way
point remains concealed until the half-way point, and then emerges quickly.
These conclusions hold because typical local quantum circuits are efficient
encoders for quantum error-correcting codes that nearly achieve the capacity of
the quantum erasure channel. Our estimate of a black hole's information
retention time, based on speculative dynamical assumptions, is just barely
compatible with the black hole complementarity hypothesis.Comment: 18 pages, 2 figures. (v2): discussion of decoding complexity
clarifie
- …