186 research outputs found

    Selective Scene Text Removal

    Full text link
    Scene text removal (STR) is the image transformation task to remove text regions in scene images. The conventional STR methods remove all scene text. This means that the existing methods cannot select text to be removed. In this paper, we propose a novel task setting named selective scene text removal (SSTR) that removes only target words specified by the user. Although SSTR is a more complex task than STR, the proposed multi-module structure enables efficient training for SSTR. Experimental results show that the proposed method can remove target words as expected.Comment: 12 pages, 8 figures, Accepted at the 34th British Machine Vision Conferenc

    Consistency of matter coupling in modified gravity

    Full text link
    Matter coupling in modified gravity theories is a nontrivial issue when the gravitational Lagrangian possesses a degeneracy structure to avoid the problem of Ostrogradsky ghost. Recently, this issue was addressed for bosonic matter fields in generalized disformal Horndeski class, which is so far the most general class of ghost-free scalar-tensor theories obtained by performing a higher-derivative generalization of invertible disformal transformations on Horndeski theories. In this paper, we clarify the consistency of fermionic matter coupling in the generalized disformal Horndeski theories. We develop the transformation law for the tetrad associated with the generalized disformal transformation to see how it affects the fermionic matter coupling. We find that the consistency of the fermionic matter coupling requires an additional condition on top of the one required for the bosonic case. As a result, we identify a subclass of the generalized disformal Horndeski class which allows for consistent coupling of ordinary matter fields, including the standard model particles.Comment: 11 page

    Circumferential Spinal Cord Decompression through a Single Posterior Approach with Microendoscopy for Thoracic and Thoracolumbar Ossification of the Posterior Longitudinal Ligament

    Get PDF
    Thoracic and thoracolumbar ossification of the posterior longitudinal ligament (OPLL) can be difficult to treat due to the anatomical position. The purpose of this study was to report the significance of a novel surgical technique that represented two cases of thoracic or thoracolumbar OPLL. The first patient was a 72-year-old woman who had a beak-type OPLL at the T11/12. The second was a 45-year-old woman who had a beak-type OPLL at the T12/L1. We performed circumferential spinal cord decompression through a single posterior approach with microendoscopy in both cases. The postoperative computed tomography revealed the complete removal of the OPLL, and the magnetic resonance imaging confirmed adequate decompression of the spinal cord. Preoperative symptoms were substantially improved in both patients. To date, we have used this novel technique to treat five patients with thoracic or thoracolumbar OPLL. This new surgical technique is likely to be useful in patients with a beak-type OPLL of the thoracic or thoracolumbar spine

    Population-level transition of capsular polysaccharide types among sequence type 1 group B Streptococcus isolates with reduced penicillin susceptibility during a long-term hospital epidemic

    Get PDF
    Over a 35-month period, group B Streptococcus isolates with reduced penicillin susceptibility (PRGBS) were detected from elderly patients at a regional hospital in Japan, accompanying population-level transition of PRGBS serotypes. The genetic relatedness of 77 non-duplicate PRGBS from 73 patients was analysed. Serotype III PRGBS predominated (16 serotype III/1 serotype Ib) in the first 9 months (period I), then 3 serotype Ib isolates appeared transiently for the next 3 months (period II), which was replaced predominantly by serotype Ia (20 serotype Ia/1 serotype III/1 non-typeable) for 9 months (period III). In the last 14 months (period IV), besides 25 serotype Ia isolates, 10 serotype III were also identified. Serotypes III and Ia isolates, belonging to ST1, shared G329V, G398A, V405A and G429D substitutions in penicillin-binding protein 2X. Of three strains subjected to whole-genome sequencing, serotype III strain SU12 (period I) had a higher degree of genomic similarity with serotype Ia strain SU97 (period III) than serotype Ib strain SU67 (period II) based on average nucleotide identity and single nucleotide polymorphisms. Analysis of the cps gene clusters and the upstream and downstream flanking sequences revealed that disruption of the hyaluronidase gene located upstream of cpsY by insertion of IS 1548 was found in strain SU12, whereas Delta ISSag8 was inserted between tRNA-Arg and rpsA genes located downstream of cpsL in strain SU97. Interestingly, most serotype III PRGBS re-emerging in period IV had this tRNA-Arg-Delta ISSag8-rpsA region. Capsular switching and nosocomial transmission may possibly contribute to population-level serotype replacement among ST1 PRGBS isolates. (c) 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.ArticleINTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS.53(3):203-210(2019)journal articl

    A frameshift deletion mutation in the cardiac myosin-binding protein C gene associated with dilated phase of hypertrophic cardiomyopathy and dilated cardiomyopathy

    Get PDF
    SummaryObjectivesA few studies reported that some mutations in the cardiac myosin-binding protein C (MyBPC) gene were associated with dilated phase of hypertrophic cardiomyopathy (D-HCM) resembling dilated cardiomyopathy (DCM). We studied 5 unrelated cardiomyopathy probands caused by an identical mutation in the MyBPC gene. The results of clinical and genetic investigations in these patients are presented in this paper.MethodsWe analyzed MyBPC gene in DCM patients as well as patients with HCM.ResultsAn R945fs/105 mutation, 2-base deletion at nucleotides 18,535 and 18,536, was identified in 4 of the 176 HCM probands and in 1 of the 54 DCM probands. Genetic analysis in relatives of those probands revealed another one member with this mutation. A total of 6 subjects had R945fs/105 mutation. The mean age of these six patients at diagnosis was 61 years. At initial evaluation, three of them were diagnosed as having HCM with normal left ventricular (LV) systolic function. The other two patients already had D-HCM. The remaining one patient was diagnosed as having DCM because of reduced LV systolic function (ejection fraction=31%) without increased LV wall thickness. During follow-up (7.6 years), all three patients with impaired LV systolic function were admitted for treatment of heart failure and/or sustained ventricular tachycardia. Finally, one patient with the diagnosis of D-HCM died of heart failure.ConclusionsThe patients with this mutation may develop LV systolic dysfunction and suffer from cardiovascular events through mid-life and beyond

    Output Prediction Attacks on Block Ciphers using Deep Learning

    Get PDF
    Cryptanalysis of symmetric-key ciphers, e.g., linear/differential cryptanalysis, requires an adversary to know the internal structures of the target ciphers. On the other hand, deep learning-based cryptanalysis has attracted significant attention because the adversary is not assumed to have knowledge about the target ciphers with the exception of the algorithm interfaces. Such cryptanalysis in a blackbox setting is extremely strong; thus, we must design symmetric-key ciphers that are secure against deep learning-based cryptanalysis. However, almost previous attacks do not clarify what features or internal structures affect success probabilities. Although Benamira et al. (Eurocrypt 2021) and Chen et al. (ePrint 2021) analyzed Gohr’s results (CRYPTO 2019), they did not find any deep learning specific characteristic where it affects the success probabilities of deep learning-based attacks but does not affect those of linear/differential cryptanalysis. Therefore, it is difficult to employ the results of such cryptanalysis to design deep learning-resistant symmetric-key ciphers. In this paper, we propose deep learning-based output prediction attacks in a blackbox setting. As preliminary experiments, we first focus on two toy SPN block ciphers (small PRESENT-[4] and small AES-[4]) and one toy Feistel block cipher (small TWINE-[4]). Due to its small internal structures with a block size of 16 bits, we can construct deep learning models by employing the maximum number of plaintext/ciphertext pairs, and we can precisely calculate the rounds in which full diffusion occurs. Next, based on the preliminary experiments, we explore whether the evaluation results obtained by our attacks against three toy block ciphers can be applied to block ciphers with large block sizes, e.g., 32 and 64 bits. As a result, we demonstrate the following results, specifically for the SPN block ciphers: First, our attacks work against a similar number of rounds that the linear/differential attacks can be successful. Next, our attacks realize output predictions (precisely ciphertext prediction and plaintext recovery) that are much stronger than distinguishing attacks. Then, swapping or replacing the internal components of the target block ciphers affects the average success probabilities of the proposed attacks. It is particularly worth noting that this is a deep learning specific characteristic because swapping/replacing does not affect the average success probabilities of the linear/differential attacks. Finally, by analyzing the influence of the differences in the characteristics of three S-boxes (i.e., the original PRESENT S-box and two known weak S-boxes) on deep learning specific characteristics, we clarify that the resistance of the target ciphers to differential/linear attacks can affect the success probability of deep learning-based attacks. We also confirm whether the proposed attacks work on the Feistel block cipher. We expect that our results will be an important stepping stone in the design of deep learning-resistant symmetric-key ciphers

    Primary leiomyoma of the bladder

    Get PDF
    The case presented is of a 47-year-old patient with an extravesical pedunculated bladder leiomyoma, which was difficult to distinguish from a retroperitoneal tumor. Preoperatively, it was suspected to be a retroperitoneal tumor and a laparotomy with tumor resection was performed. lntraoperatively, the bladder and tumor were connected by a cord-like tissue. A retrospective review of preoperative images revealed that cord-like tissue, identified intraoperatively, was also present. Bladder leiomyomas can grow as extravesical pedunculated tumors. Therefore, when the continuity between the bladder and tumor is only a cord-like object, the finding of continuity is useful to diagnose with bladder leiomyoma

    高校へ不本意入学した不登校生徒への援助 -現在と未来を統合した未来展望の視点から-

    Get PDF
    departmental bulletin pape

    Mutant analyses reveal different functions of fgfr1 in medaka and zebrafish despite conserved ligand–receptor relationships

    Get PDF
    AbstractMedaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain–hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand–receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8–Fgfr1 while maintaining the ligand–receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function
    corecore