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Abstract

Cryptanalysis of symmetric-key ciphers, e.g., linear/differential cryptanalysis, requires an
adversary to know the internal structures of the target ciphers. On the other hand, deep learning-
based cryptanalysis has attracted significant attention because the adversary is not assumed to
have knowledge about the target ciphers with the exception of the algorithm interfaces. Such
cryptanalysis in a blackbox setting is extremely strong; thus, we must design symmetric-key
ciphers that are secure against deep learning-based cryptanalysis. However, almost previous
attacks do not clarify what features or internal structures affect success probabilities. Although
Benamira et al. (Eurocrypt 2021) and Chen et al. (ePrint 2021) analyzed Gohr’s results
(CRYPTO 2019), they did not find any deep learning specific characteristic where it affects the
success probabilities of deep learning-based attacks but does not affect those of linear/differential
cryptanalysis. Therefore, it is difficult to employ the results of such cryptanalysis to design deep
learning-resistant symmetric-key ciphers. In this paper, we propose deep learning-based output
prediction attacks in a blackbox setting. As preliminary experiments, we first focus on two toy
SPN block ciphers (small PRESENT-[4] and small AES-[4]) and one toy Feistel block cipher
(small TWINE-[4]). Due to its small internal structures with a block size of 16 bits, we can
construct deep learning models by employing the maximum number of plaintext/ciphertext
pairs, and we can precisely calculate the rounds in which full diffusion occurs. Next, based on
the preliminary experiments, we explore whether the evaluation results obtained by our attacks
against three toy block ciphers can be applied to block ciphers with large block sizes, e.g., 32
and 64 bits. As a result, we demonstrate the following results, specifically for the SPN block
ciphers: First, our attacks work against a similar number of rounds that the linear/differential
attacks can be successful. Next, our attacks realize output predictions (precisely ciphertext
prediction and plaintext recovery) that are much stronger than distinguishing attacks. Then,
swapping or replacing the internal components of the target block ciphers affects the average
success probabilities of the proposed attacks. It is particularly worth noting that this is a
deep learning specific characteristic because swapping/replacing does not affect the average
success probabilities of the linear/differential attacks. Finally, by analyzing the influence of the
differences in the characteristics of three S-boxes (i.e., the original PRESENT S-box and two
known weak S-boxes) on deep learning specific characteristics, we clarify that the resistance
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of the target ciphers to differential/linear attacks can affect the success probability of deep
learning-based attacks. We also confirm whether the proposed attacks work on the Feistel block
cipher. We expect that our results will be an important stepping stone in the design of deep
learning-resistant symmetric-key ciphers.

1 Introduction

Unlike public-key cryptography, where security is reduced to mathematically difficult problems, the
security of symmetric-key cryptography is evaluated based on resistance against classical attacks,
e.g., differential, linear, and integral attacks. Specifically, the corresponding statistical characteris-
tics, e.g., differential, linear, and integral characteristics, are searched using automatic evaluation
programs and tools, e.g., SAT and MILP solvers. If there is a considerable security margin against
these characteristics, the cipher can be considered to be secure against such attacks. Generally,
these evaluations require extensive knowledge about the target algorithms and state-of-the-art
cryptanalysis techniques because automatic evaluation programs and tools must be customized for
different target algorithms and attacks.

Recently, deep learning-based cryptanalysis has received considerable attention in the symmetric-
key cryptography field [1, 5–8, 10–14, 17, 21, 22, 25, 35, 39–41]. Remarkably, such attacks do not re-
quire knowledge about the target ciphers, except for the algorithm interfaces, i.e., these attacks
are feasible even if the adversary does not know the algorithm of the target ciphers. In a black-
box setting, such cryptanalysis is extremely strong, i.e., the adversary can mount an attack with
minimum knowledge about the target ciphers and cryptanalysis techniques. Thus, we must con-
sider deep learning-based cryptanalysis when designing symmetric-key ciphers. However, previous
studies have not clarified the features or internal structures that affect the success probabilities.
Recently, Benamira et al. [8] and Chen et al. [12] confirmed that the characteristics explored by
Gohr [17] can be employed in classical distinguishing attacks. These results may be used to design
deep learning-resistant symmetric-key ciphers; however, this may be insufficient because they did
not identify any deep learning specific characteristic in such a manner that it affects the success
probabilities of deep learning-based attacks but does not affect those of classical attacks such as
linear/differential attacks. Finding such a deep learning specific characteristic is important because
exploiting such a characteristic can make the target cipher vulnerable to deep learning-based at-
tacks. Thus, the usage of previous results of these attacks to design such deep learning-resistant
symmetric-key ciphers is difficult.

1.1 Our Contribution

In this study, we present new deep learning-based attacks on block ciphers in a blackbox setting
where the adversary does not know the algorithm of target ciphers with the exception of the
algorithm interfaces, e.g., the key and block sizes. In a blackbox setting, deep learning-based
cryptanalysis enables the use of pre-obtained input/output pairs to construct deep learning models
for the proposed attacks, e.g., ciphertext prediction and plaintext recovery, and then we can use
these models to evaluate the proposed attacks. The next step is to examine the correlations between
the evaluation results obtained by deep learning-based cryptanalysis and the characteristics of the
target block ciphers. Here, we use a whitebox analysis technique in the evaluation phase using
deep learning models. The whitebox analysis explores the relationship between the ability of deep
learning-based attacks and classical attacks, e.g., linear/differential attacks; therefore, it may be
possible to clarify the correlations between evaluation results obtained by deep learning-based
cryptanalysis and the characteristics of the target block ciphers.
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To obtain highly accurate results from the whitebox analysis in a blackbox setting, we perform
comprehensive analyses using all input/output pairs, i.e., it is not appropriate to target reduced-
round block ciphers because they have the same block size as the original block ciphers (e.g., 64
or 128 bits). For this reason, we first focus on toy block ciphers with a small block size (e.g., 16
bits) and perform the whitebox analysis against these toy block ciphers as preliminary experiments.
Based on the preliminary experiments, we apply the proposed attacks to block ciphers with large
block sizes (e.g., 32 and 64 bits) and consider the whitebox analysis against the target block ciphers.
The details of our contributions in this study are given as follows.

1.1.1 New Deep Learning-based Output Prediction Attacks

To perform the whitebox analysis against block ciphers with large block sizes, we first focus on
two toy SPN block ciphers (16-bit block variants of PRESENT [9] called small PRESENT-[4] and
an AES-like cipher called small AES-[4]) and one toy Feistel block cipher (a type-II generalized
Feistel structure with 4 branches called small TWINE-[4]). This allows us to accurately compare
the effectiveness of the proposed deep learning-based attacks, which guess the ciphertext/plaintext
from the corresponding plaintext/ciphertext without any knowledge of keys with that of classical
attacks.

Because of its small internal structures with a block size of 16 bits, we can develop deep learning
models by exploiting the maximum number of plaintext/ciphertext pairs, and we can precisely cal-
culate linear/differential probability for each round. We demonstrate that the proposed attacks are
effective against the similar number of rounds as linear/differential attacks. For small PRESENT-
[4], we successfully mount output prediction attacks on 4 rounds, while the number of rounds
that the differential distinguisher can work is 5. For small AES-[4] and small TWINE-[4], we can
mount output prediction attacks on 1 and 3 rounds, while differential distinguishing attacks can
reach 3 and 7 rounds, respectively. Note that our attacks realize output predictions (i.e., cipher-
text prediction and plaintext recovery) that are considerably stronger than distinguishing attacks
even without knowing the algorithm of the target ciphers. Nevertheless, for small TWINE-[4],
the number of rounds that the proposed attacks can be successful is significantly less than that of
linear/differential attacks. To clarify this cause, additional studies will be required in future.

Next, based on evaluation results for toy block ciphers, we apply the proposed attacks to the
target block ciphers with a block size of 64 bits, i.e., PRESENT [9], AES-like, and TWINE-like
ciphers. Consequently, we consider that by increasing the amount of training data, the whitebox
analysis against block ciphers with large block sizes can be regarded as equal to or greater than the
whitebox analysis against toy block ciphers with a block size of 16 bits; thus, the whitebox analysis
against the target block ciphers with large block sizes can be summarized as follows:

• For PRESENT, the maximum number of rounds that the proposed attacks can be successful
is at least equal to that of classical linear/differential attacks.

• For AES-like and TWINE-like ciphers, we conjecture that the maximum number of rounds
that the proposed attacks can be successful also becomes equal to that of classical lin-
ear/differential attacks when the amount of training data increases more.

In addition, we conduct additional experiments with 10,000 trials (rather than 100 trials) to
confirm the accuracy of the success probability calculated from the proposed attacks. Consequently,
we demonstrate that the additional experiments with a small number of secret keys are sufficient
to obtain the best success probability, and therefore the proposed attacks lead to reliable results.
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1.1.2 Extended Whitebox Analysis on Small PRESENT-[4]

We swap or replace internal components on the toy SPN block cipher, particularly on the 4-round
small PRESENT-[4], to investigate the relationship between the internal components and success
probability of our deep learning-based attacks, and evaluate the impact of these modifications on the
success probability of the prediction attacks. The toy Feistel block cipher, i.e., small TWINE-[4], is
excluded from this investigation because Feistel block ciphers generally use the same components
for both encryption and decryption algorithms. Consequently, we find that swapping or replac-
ing the internal components significantly affects the average success probabilities of the proposed
attacks. It is particularly worth noting that this is a deep learning specific characteristic because
component swapping and replacing that we did in this study did not affect success probabilities
of linear/differential attacks. We expect that our results will be an important foundation in the
design of deep learning-resistant symmetric-key ciphers.

1.1.3 Deeper Look into Whitebox Analysis Using Weak S-boxes

We look deeper into deep learning specific characteristics and extend the whitebox analysis to
explore clues to facilitate the design of symmetric-key cryptographic algorithms that are secure
against deep learning-based attacks. To perform the extended whitebox analysis, we employ two
weak variants of small PRESENT-[4] by replacing the original S-box with known weak S-boxes.
We select the weak S-box1 shown in Fig. 6.1 in the literature [28]. This is used in an example
of differential cryptanalysis and is known to be vulnerable to differential attacks. We also select
the weak S-box2 shown in Fig. 7.1 in the literature [28], which is used in an example of linear
cryptanalysis and is known to be vulnerable to linear attacks. Thus, we aim to analyze the influence
of the differences in the characteristics of three S-boxes (i.e., the original PRESENT S-box and two
weak S-boxes) on deep learning specific characteristics. As a result, the whitebox analysis against
small PRESENT-[4] with weak S-boxes can be summarized as follows:

• For the small PRESENT-[4] with weak S-box1, we successfully mount output prediction
attacks on 11 rounds, and the number of rounds that the differential and linear distinguishing
attacks can work is 11 and 9, respectively.

• For the small PRESENT-[4] with weak S-box2, we successfully mount output prediction
attacks on 8 rounds, and the number of rounds that the differential and linear distinguishing
attacks can work is 7 and 8, respectively.

From these results, we conclude that the resistance of the target ciphers to differential/linear attacks
can affect the success probability of deep learning-based attacks.

1.2 Comparison with Existing Studies

Table 1 compares the proposed and existing deep learning-based attacks [1, 5–8, 10–14, 17, 21–23,
25, 35, 39–41]. For comparison, we particularly focused on whether these attacks correspond to a
deep learning-based attack in a blackbox setting and a deep learning-based attack with the whitebox
analysis. When an adversary performs a deep learning-based attack in a non-blackbox setting,
the adversary must be familiar with the target ciphers as well as state-of-the-art cryptanalysis
techniques. This degrades the original function of a deep learning-based attack in such a way that
it does not require any knowledge of target ciphers and state-of-the-art cryptanalysis techniques,
except algorithm interfaces. In addition, even if an adversary uses the whitebox analysis in a
non-blackbox setting to perform a deep learning-based attack, this should not result in accurate
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Table 1: Comparison of deep learning-based cryptanalysis. OP:=Output Prediction,
PR:=Plaintext Recovery, KR:=Key Recovery, DD:=Differential Distinguisher, LD:=Linear Dis-
tinguisher, and DLD:=Differential-Linear Distinguisher.

Reference Cipher (Block size) Structures
Blackbox
Setting

Target
#Round
(#Full)

Whitebox
Analysis

BSS08 [5] Serpent (128 bits) SPN No DD 7 (32) No

AAAA12 [1] Simplified DES (12 bits) Feistel Yes OP 2 (N/A2) No

DH14 [14] Simplified DES (12 bits) Feistel Yes KR/DD 2 (N/A2) No

Gohr19 [17] Speck32/64 (32 bits) Feistel No1 KR/DD 12 (22) Yes

XHY19 [40] DES (64 bits) Feistel Yes PR 2 (16) No

CY20 [10] Speck32/64 (32 bits) Feistel No KR/DD 13 (22) Yes

CY20 [10] DES (64 bits) Feistel No KR/DD 8 (16) Yes

HLZW20 [21] DES (64 bits) Feistel No KR/LD 5 (16) No

So20 [35] Simplified DES (8 bits) Feistel No KR/LD 8 (8) No

So20 [35] Speck32/64 (32 bits) Feistel No KR/LD 22 (22) No

So20 [35] Simon32/64 (32 bits) Feistel No KR/LD 32 (32) No

BBDC21 [6] Gimli-Perm. (384 bits) SPN No DD 8 (48) No

BBDC21 [6] ASCON-Perm. (320 bits) SPN No DD 3 (16) No

BBDC21 [6] KNOT-256 (256 bits) Feistel No DD 10 (28) No

BBDC21 [6] KNOT-512 (512 bits) Feistel No DD 12 (52) No

BBDC21 [6] CHASKEY-Perm. (128 bits) ARX No DD 4 (12) No

BGMLT21 [7] Speck32/64 (32 bits) Feistel No KR/DD 13 (22) Yes

BGMLT21 [7] Simon32/64 (32 bits) Feistel No KR/DD 16 (32) Yes

BGPT21 [8] Speck32/64 (32 bits) Feistel No DD 7 (22) No

BGPT21 [8] Simon32/64 (32 bits) Feistel No DD 8 (32) No

CY21 [12] CHASKEY-Perm. (128 bits) ARX No DLD 4 (12) Yes

CY21 [12] DES (64 bits) Feistel No DLD 6 (16) Yes

CY21 [12] Speck32/64 (32 bits) Feistel No DLD 7 (22) Yes

CY21 [13] Speck32/64 (32 bits) Feistel No KR/DD 13 (22) Yes

CY21 [13] Speck48/72 (48 bits) Feistel No KR/DD 12 (22) Yes

CY21 [13] Speck48/96 (48 bits) Feistel No KR/DD 12 (23) Yes

CY21 [11] DES (64 bits) Feistel No DD 6 (16) No

CY21 [11] Speck32/64 (32 bits) Feistel No KR/DD 11 (22) No

CY21 [11] PRESENT (64 bits) SPN No DD 7 (31) No

HRC21 [22] Simon32/64 (32 bits) Feistel No KR/DD 13 (32) No

HRC21 [23] Simon32/64 (32 bits) Feistel No KR/DD 13 (32) Yes

HRC21 [23] Simon48/96 (48 bits) Feistel No KR/DD 14 (36) Yes

HRC21 [23] Simon64/128 (64 bits) Feistel No KR/DD 13 (44) Yes

HRC21 [23] Speck32/64 (32 bits) Feistel No DD 8 (22) Yes

HRC21 [23] Speck48/96 (48 bits) Feistel No DD 7 (23) Yes

HRC21 [23] Speck64/128 (64 bits) Feistel No DD 8 (27) Yes

ITYY21 [25] TWINE (64 bits) Feistel No DD 8 (36) No

YK21 [41] Speck32/64 (32 bits) Feistel No DD 9 (22) Yes

YK21 [41] Simon32/64 (32 bits) Feistel No DD 12 (32) Yes

YK21 [41] GIFT 64 (64 bits) SPN No DD 8 (28) Yes

WW21 [39] Speck32/64 (32 bits) Feistel No DD 12 (22) Yes

WW21 [39] Speck48/72 (48 bits) Feistel No DD 15 (22) Yes

WW21 [39] Speck64/96 (64 bits) Feistel No DD 18 (26) Yes

This paper PRESENT (64 bits) SPN Yes OP 4 (31) Yes

This paper AES-like (64 bits) SPN Yes OP 1 (N/A2) Yes

This paper TWINE-like (64 bits) Feistel Yes OP 3 (N/A2) Yes

This paper small PRESENT with weak S-box1 SPN Yes OP 11 (31) Yes

This paper small PRESENT with weak S-box2 SPN Yes OP 8 (31) Yes

1 Gohr [17] stated that we consider it interesting that this much knowledge about the differential distribution of round-reduced
Speck can be extracted from a few million examples by black-box methods. However, his black-box methods differ from our
defined blackbox setting. Thus, we consider his model to be a non-blackbox setting.

2 The simplified DES, AES-like, and TWINE-like ciphers, which are the modified versions of original ciphers, do not specify
the number of full rounds; thus, we described the number of full rounds of these modified versions as ‘N/A’.
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evaluations of the attack. In summary, it is important to perform a deep learning-based attack
with the whitebox analysis in a blackbox setting. As shown in Table 1, the proposed attacks are
the first deep learning-based output prediction attacks with whitebox analysis on both SPN and
Feistel structures in a blackbox setting.

Regarding the whitebox analysis, Danziger et al. presented deep learning-based attacks that
predict key bits of 2-round DES from a plaintext/ciphertext set, and analyze the relationship be-
tween these attacks and the differential probability [14]. They compared variants employing several
types of S-boxes with different properties for differential attacks, and they concluded that there
is a nontrivial relationship between the differential characteristics and success probability of their
deep learning-based attacks. However, their results are extremely limited because they targeted a
two-round Feistel construction, which is quite insecure even if the component is ideal function. It
is unclear how much the property of internal components affects the security of the whole construc-
tion. In addition to improve Gohr’s deep learning-based attack [17], Benamira et al. [8] and Chen
et al. [12] improved the success probability of traditional distinguishers using characteristics that
are expected to be reacted by Gohr’s attack. Their work confirms whether characteristics explored
by Gohr can be employed in the traditional distinguishing attacks and they did not identify any
deep learning specific characteristic. However, we compare the ability of classical attack with that
of our deep learning-based attacks and investigate a relationship among them. Then, we identify
deep learning specific characteristics of small PRESENT-[4]. To summarize, to the best of our
knowledge, our results are the first ones that perform the whitebox analysis.

Alani and Hu reported plaintext recovery attacks on DES, 3-DES, and AES [2, 24] that guess
plaintexts from given ciphertexts. They claimed that attacks on DES, 3-DES, and AES are feasible
with 211, 211 and 1741 (≃ 210.76) plaintext/ciphertext pairs, respectively. However, Xiao et al.
doubted the correctness of their results [2, 24] because they could not be reproduced. Baek et al.
also pointed this out in the literature [4]. Therefore, we exclude these results in Table 1. Mishra
et al. reported that they mounted output prediction attacks on full-round PRESENT; however,
it did not work well [16]. In addition, certain results have yielded classical ciphers such as Caesar
cipher, Vigenere, and Enigma ciphers [15,18,19,32].

Other machine learning-based analyses have also been reported, e.g., [30,31]. Tan et al. demon-
strated that deep learning can be used to distinguish ciphertexts encrypted by AES, Blowfish, DES,
3-DES, and RC5, respectively [37], for detecting the encryption algorithm that the malware utilizes.
Alshammari et al. attempted to classify encrypted Skype and SSH traffic [3].

Organization. The remainder of this paper is organized as follows. Our target ciphers, i.e., two
SPN block ciphers and one Feistel block cipher (and their toy ciphers), are introduced in Sect. 2.
The proposed deep learning-based output prediction attacks in a blackbox setting are introduced
in Sect. 3. Our whitebox analysis is presented in Sect. 4, which explores the evaluation results
obtained by our attacks against three toy block ciphers can be applied to block ciphers with large
block sizes. The extended whitebox analyses on small PRESENT-[4] are discussed in Sects. 5 and
6. Finally, the paper is concluded in Sect. 7.

2 Preliminaries

In this section, we introduce two SPN block ciphers (PRESENT [9] and AES-like cipher), one
Feistel block cipher (TWINE-like cipher), and their toy ciphers (small PRESENT-[n] [29], small
AES-[n], and small TWINE-[n]).

PRESENT and small PRESENT-[n]: PRESENT [9] is a lightweight SPN block cipher with
a 64-bit block size, 31 rounds, and a key size of either 80 or 128 bits. To analyze PRESENT, a
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Figure 1: (a) Round Functions of small PRESENT-[n] and small AES-[n], (b) Last Round Function
of small AES-[n].

Table 2: Original S-box for PRESENT and small PRESENT-[n].
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

toy model of PRESENT called small PRESENT-[n] [29] has been proposed. We show the round
function of small PRESENT-[n] in Fig. 1. Since the block size is 4n, small PRESENT-[16] is
equivalent to the original PRESENT. The variant n, which specifies the block size and round key
length, allows us to control the round of full diffusion. The S-box has 4-bit input and output.
We provide the correspondence table in Table 2 that maps F4

2 → F4
2. The pLayer is described

as bit permutation P (i), which is defined as follows. Note that this is a generalization of that of
PRESENT and is equivalent to that of PRESENT when n = 16. P (i) is used for encryption and
P−1(i) is used for decryption.

P (i) =

{
n× i mod (4n− 1) (0 ≤ i < 4n− 1)

4n− 1 (i = 4n− 1)

P−1(i) =

{
4× i mod (4n− 1) (0 ≤ i < 4n− 1)

4n− 1 (i = 4n− 1)

For key scheduling, the key scheduling algorithm of PRESENT-80, which is a variant of PRESENT
with a key length of 80, is executed; furthermore, the 4n rightmost bits are used as round keys rki.

AES-like and small AES-[n]: We design AES-like cipher with a 64-bit block size, called AES-
like for short. To analyze AES-like, we design its toy model called small AES-[n]. The round
function of small AES is shown in Fig. 1. As with the case of PRESENT, small AES-[16] is
equivalent to AES-like since the block size is 4n. The S-box and key scheduling are the same as
those of PRESENT. The maximum distance separable (MDS) matrix (over GF (24) defined by the
irreducible polynomial x4+x+1) is the same as that of Piccolo [34], which is expressed as follows.

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


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Figure 2: Round Function of small TWINE-[n]

Table 3: Weak S-box1 which is known to be vulnerable to differential attack.
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] 6 4 C 5 0 7 2 E 1 F 3 D 8 A 9 B

Table 4: Weak S-box2 which is known to be vulnerable to linear attack.
x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] F E B C 6 D 7 8 0 3 9 A 4 2 1 5

When a 16-bit input X(16) is given, the output is computed as t(y0(4), y1(4), y2(4), y3(4)) ← M ·t
(x0(4), x1(4), x2(4), x3(4)).

TWINE-like and small TWINE-[n]: We design TWINE-like cipher with a 64-bit block size,
called TWINE-like for short. To analyze TWINE-like, we design its toy model called small TWINE-
[n]. For our design, we adopt the type-II generalized Feistel structure with n branches and similar
F function as TWINE, which comprises round key operation and 4-bit S-box, as shown in Fig. 2.
As with the case of PRESENT, small TWINE-[16] is equivalent to TWINE-like since the block size
is 4n. The S-box and key scheduling are the same as those of PRESENT. The pLayer is described
as round permutation RP , which is defined as follows:

RP : (y0, y1, . . . , yn−2, yn−1)← (x1, x2, . . . , xn−1, x0).

Two sub-round keys, rksi for s ∈ {0, 1, . . . , n2 −1}, are used in each round, which are generated from
the round key rki as follows:

rksi = (rki ≫ (4n− (4s+ 4))) & 0xF,

where ≫ and & are bitwise right shift operation and bitwise AND operation, respectively.

Weak S-boxes: We provide additional S-boxes called weak S-box1 and weak S-box2 in Tables 3
and 4, respectively. These S-boxes were introduced in the literature [28]. The weak S-box1 is
known to be vulnerable to differential attacks, whereas the weak S-box2 is known to be vulnerable
to linear attacks. We construct two weak variants of small PRESENT-[4] for our experiments by
replacing the original S-box with these S-boxes.

3 Methodology

In this section, we present the proposed deep learning-based output prediction attacks in a blackbox
setting. To realize the proposed attacks, we construct deep learning models for ciphertext prediction
and plaintext recovery, respectively. In the following, we first discuss the goals of these attacks and
then explain the construction of deep learning models and their evaluation.
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3.1 Goals of Attack

To date, the relationship between the abilities classical attacks and deep learning-based ones has
not been clarified. Here, we focus on clarifying this relationship. We then revisit the common sense
in previous works using deep learning-based attacks. The targets of this work are summarized as
follows:

1. We clarify the difference in capabilities between the classical and deep learning-based attacks.
Specifically, we compare the success probabilities of deep learning-based attacks with those
of classical attacks.

2. Swapping or replacing the internal components in the target block ciphers does not affect the
success probability of linear/differential cryptanalysis. We clarify how such modifications to
cipher’s algorithms affect the success probability of deep learning-based attacks.

3. We clarify which vulnerabilities in the cryptographic components affect the accuracy of deep
learning-based attacks. Specifically, we apply the classical and deep learning-based attacks to
two weak variants of small PRESENT-[4], as described in Sect. 2, and observe the differences
in the capabilities of these attacks by comparing the success probabilities.

We evaluate the success probabilities of attacks using the following settings.

Known-plaintext attack setting: In this setting, the adversary is given multiple plaintext/ciphertext
pairs relating to a single secret key, and the pairs are used as training data to construct a
deep learning model.

Blackbox setting: In this setting, the adversary does not have knowledge about the target block
ciphers, except algorithm interfaces such as key and block sizes.

In both of these settings, the adversary is a very weak cryptographic attacker.
The blackbox setting assumes that the adversary does not know the internal structures of the

cipher. In addition, the adversary does not know the cipher is a permutation. The blackbox setting
also assumes that the adversary only knows the input-output format and possesses deep learning
knowledge.

Regarding attack settings, a ciphertext-only attack setting, which allows the adversary to obtain
only the ciphertext, is the weakest setting. However, information-theoretically no information is
provided to the adversary in the setting except for several special cases, e.g., the broadcast setting
of RC4 [33]. In fact, the attack in this setting is practically impossible. The known-plaintext attack
is the next weakest setting. In this setting, the adversary can obtain some information from the
given plaintext/ciphertext pairs and use these pairs for the attacks. The other attack settings,
e.g., chosen-plaintext attack setting, require the adversary to possess some knowledge about the
ciphertext, and the adversary in this setting is stronger than the adversary in the known-plaintext
attack setting. Thus, we employ the known-plaintext attack setting.

In these settings, we decide the adversary’s goal to output predictions (i.e., ciphertext predic-
tion and/or plaintext recovery), and we evaluate the success probabilities of these attacks. The
ciphertext prediction and plaintext recovery attacks are summarized as follows:

Ciphertext prediction attack: In this attack, the adversary obtains multiple plaintext/ciphertext
pairs regarding a secret key, where n is the block size. Then, the adversary predicts a cipher-
text of a plaintext not included in the previously given pairs.
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Table 5: Hyperparameters
Hyperparameters Search ranges

Number of hidden nodes 100, 200, 300, 400, 500

Initial value of learning rates 0.0001, 0.001, 0.01

Number of hidden layers 1, 2, 3, 4, 5, 6, 7

Optimizers SGD, Adam [27], RMSprop [38]

Plaintext recovery attack: In this attack, the adversary obtains multiple plaintext/ciphertext
pairs regarding a secret key, and then the adversary recovers a plaintext of a ciphertext that
is not included in the pairs given previously.

If the ciphertext prediction attack is possible, forgery of the Cipher-based Message Authentication
Code (CMAC) is possible. If the plaintext recovery attack is possible, the adversary can obtain the
plaintext of any ciphertext without possessing the secret key used for encryption.

3.2 Neural Network and Hyperparameters

Deep learning allows us to automatically extract features unlike statistical machine learning tech-
niques, e.g., Bayesian inference. Deep learning treats nonlinear separable problems; thus, it appears
to work well for simulating cryptographic functions with nonlinearity. Hyperparameters such as
the initial learning rate, number of hidden nodes (neurons), and optimizers, are defined prior to
the learning phase and are used to construct models. These parameters affect model performance;
thus, they are optimized using assessment metrics.

In this paper, we consider ciphertext prediction and plaintext recovery as regression problems
with supervised learning where plaintext/ciphertext pairs are used as training data. To this end,
we must extract numerous features from the plaintext/ciphertext pairs obtained under the known-
plaintext attack; therefore, we employ long short-term memory (LSTM) which is a type of recurrent
neural networks (RNN) [20]. The LSTM, which is a general technique for mapping sequences to
sequences with neural networks, is used in the field of machine translation [36]. As the LSTM can
realize the mapping between sequences in machine translation, we consider that it can also realize
the mapping between sequences (i.e., between plaintexts and ciphertexts) in encryption/decryption
of permutation-based block ciphers. In addition, we consider that numerous features can be ex-
tracted from plaintext/ciphertext pairs, i.e., the inputs to our deep learning models, by using the
LSTM, which enables long-term memory of input sequences. In fact, we have confirmed that the
use of the LSTM induces better experimental results than that of the convolutional neural network
(CNN), as described in Appendix A for more details. We then optimize hyperparameters, e.g.,
number of hidden nodes, initial learning rates, number of hidden layers, and optimizers. Table
5 shows the search range for each hyperparameter. During the hyperparameter optimization, we
use different secret keys from those used in the construction of deep learning models because we
strictly evaluate the success probabilities of ciphertext prediction and plaintext recovery without
depending on secret keys. In the following, the procedure to optimize hyperparameters is similar
to constructing deep learning models, with the exception of the number of secret keys.

3.3 Deep Learning Models and Their Evaluation

We construct and evaluate deep learning models for ciphertext prediction according to the following
procedure. Note that we show the plaintext recovery case in parentheses.
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Step 1. The adversary obtains multiple plaintext/ciphertext pairs under the known-plaintext at-
tack. In our experiments, we randomly select multiple plaintexts and generate ciphertexts
corresponding to the selected plaintexts.

Step 2. The adversary uses the obtained plaintext/ciphertext pairs as training data to construct
deep learning models. Then, the adversary constructs a deep learning model for ciphertext
prediction (plaintext recovery) using the plaintexts (ciphertexts) as inputs and the ciphertexts
(plaintexts) as the correct outputs.

Step 3. The adversary uses all or part of the remaining plaintexts (ciphertexts), which were not
used as training data, to evaluate the constructed deep learning models. The adversary uses
these plaintexts (ciphertexts) as the input to the constructed deep learning models. Then,
the adversary predicts the unknown ciphertext (plaintext) corresponding to each plaintext
(ciphertext).

Step 4. The adversary calculates the percentage of exact match between the predicted ciphertext
(plaintext) and the correct ciphertext (plaintext) as the predicted probability.

To evaluate the predicted probabilities, we use 2x plaintext/ciphertext pairs as training data and
2y plaintext/ciphertext of the remaining plaintext/ciphertext pairs as test data when applying the
proposed attacks against the target block ciphers with a block size of 4n bits. It should be noted
here that 2x + 2y ≤ 24n. In this case, if the predicted probability is greater than (24n − 2x)

−1
, we

consider the proposed attacks to be successful. This means that an attacker without knowledge
of the target algorithms can predict the output value with a higher probability than a random
probability.

4 Whitebox Analysis

In this section, we perform the whitebox analysis to explore the relationship between the ability
of deep learning-based attacks and the classical attacks such as linear/differential attacks against
three block ciphers based on our methodology presented in Sect. 3. We first use three toy block
ciphers with a block size of 16 bits as a testbed for the proposed attacks. Based on these preliminary
experiments, we then apply the proposed attacks to block ciphers with large block sizes, such as
32 and 64 bits. Finally, we conduct additional experiments to ensure that our whitebox analysis is
accurate.

4.1 Application to Toy Block Ciphers

In this subsection, we apply the proposed attacks to three toy block ciphers, i.e., small PRESENT-
[4], small AES-[4], and small TWINE-[4], as preliminary experiments. We first explain the experi-
mental procedure for our whitebox analysis and then demonstrate experimental results to compare
the number of rounds that the proposed attacks can be successful to that of existing classical
attacks.

4.1.1 Experimental Procedure

In our experiments, we implement the proposed attacks using Keras1, which is a deep learning
library, and we employ TensorFlow as the backend. The following is our experimental environ-
ment: 8 Linux machines with 14 NVIDIA GPUs (RTX 2080 SUPER, GeForce GTX 1080 Ti,

1https://github.com/keras-team/keras
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Table 6: Experimental hyperparameters

Hyperparameters Values

Number of input layer nodes (i.e., block sizes) 16, 32, 64

Number of output layer nodes (i.e., block sizes) 16, 32, 64

Batch size 250

Number of epochs 100

TITAN Xp, Tesla K40m, and Quadro P600 Mobile). For developing LSTM models by Keras, e.g.,
model.add(LSTM(...)), we specify only units, input shape, and return sequences as its argu-
ments2. As an initial setting, we use common experimental hyperparameter values (see Table 6).
Our experiments involve the following two sub-experiments, i.e., Experiment 1 and Experiment 2.

Experiment 1: In each round, we optimize hyperparameters for the target block ciphers using the
proposed attacks, as described in Sect. 3.2. For our hyperparameter optimization, we use Optuna3,
which is an automatic optimization tool, and use its default search algorithm. The indication for
our hyperparameter optimization is the success probability of ciphertext prediction or plaintext
recovery. In our hyperparameter optimization, we obtain 100 hyperparameter candidates from
the plaintext/ciphertext pairs generated by 20 secret keys. From these candidates, we select the
optimized hyperparameter with the highest average success probabilities of ciphertext prediction or
plaintext recovery. To this end, we use 215 plaintext/ciphertext pairs as training data and remaining
215 plaintext or ciphertext as testing data; thus, each average success probability is calculated from
215 randomly generated plaintext/ciphertext pairs. If the average success probabilities of ciphertext
prediction or plaintext recovery with the optimized hyperparameter is greater than 2−15, then the
number of rounds for finding the optimized hyperparameter is incremented by one; otherwise, the
second sub-experiment is executed using the optimized hyperparameter.

Experiment 2: We use randomly generated 100 secret keys and the optimized hyperparameters
obtained in Experiment 1 to execute the proposed attacks for ciphertext prediction or plaintext
recovery; then, we compute the average success probabilities of ciphertext prediction or plaintext
recovery. The secret keys used in Experiment 2 are not the same as those used in Experiment 1.
After clarifying the number of attacked rounds for target block ciphers by Experiment 2, we use
experimental results and linear/differential probability of the target block ciphers to compare the
proposed attacks to the classical linear/differential attacks.

4.1.2 Experimental Results

Table 7 shows the experimental results of Experiment 2 using the optimized hyperparameter ob-
tained in Experiment 1. Based on these experimental results, we discuss the whitebox analysis
against three toy block ciphers, i.e., small PRESENT-[4], small AES-[4], and small TWINE-[4].

First, we compare the proposed and classical linear/differential attacks for small PRESENT-[4].
From the experimental results, the proposed attacks succeed up to 5 rounds for ciphertext prediction
and up to 4 rounds for plaintext recovery against small PRESENT-[4]. Although the average
success probability of ciphertext prediction for the 5-round small PRESENT-[4] is nearly 2−15, the
average success probability of plaintext recovery for the 4-round small PRESENT-[4] is sufficiently
greater than 2−15. In other words, we consider that the proposed attacks can be successful for a

2https://keras.io/ja/layers/recurrent/
3https://github.com/optuna/optuna
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Table 7: Average success probabilities of ciphertext prediction/plaintext recovery using the pro-
posed attacks against three toy block ciphers with a block size of 16 bits. We use 215 training data
and the remaining 215 testing data. CP:=Ciphertext Prediction and PR:=Plaintext Recovery.

Cipher
Category # nodes of # layers of Initial

Optimizer
Succ.

Round
of Attack hidden layer hidden layer learning rate prob.

small 1 CP 400 5 0.001 Adam 1

PRESENT-[4] PR 100 2 0.001 RMSprop 1

2 CP 400 4 0.001 RMSprop 1

PR 400 1 0.001 Adam 1

3 CP 300 6 0.001 RMSprop 1

PR 300 5 0.001 RMSprop 1

4 CP 300 4 0.01 Adam 2−5.63

PR 300 1 0.01 Adam 2−14.50

5 CP 200 7 0.001 Adam 2−14.08

PR 300 6 0.001 Adam 2−15.73

small 1 CP 300 4 0.001 RMSprop 1

AES-[4] PR 200 4 0.001 RMSprop 1

2 CP 300 1 0.01 Adam 2−16.02

PR 200 2 0.01 Adam 2−15.00

small 1 CP 300 3 0.001 RMSprop 1

TWINE-[4] PR 300 2 0.001 Adam 2−0.01

2 CP 400 4 0.001 RMSprop 2−0.01

PR 500 3 0.001 RMSprop 2−0.01

3 CP 300 2 0.001 RMSprop 2−10.46

PR 400 2 0.001 RMSprop 2−9.72

4 CP 200 4 0.001 RMSprop 2−14.61

PR 100 1 0.01 RMSprop 2−15.49

5 CP 300 5 0.01 RMSprop 2−15.64

PR 500 4 0.001 RMSprop 2−15.16

maximum of 4 rounds. On the other hand, from the precisely calculated differential probability
of small PRESENT-[4] (see Table 8), the maximum number of rounds that the differential attack
can be successful is 5. Similarly, based on the precisely calculated linear probability (see Table 9),
the maximum number of rounds that a linear attack can be successful is 4. Therefore, for small
PRESENT-[4], the maximum number of rounds that the proposed attack can be successful is
equivalent to that of classical linear/differential attacks.

Next, we compare the proposed and classical linear/differential attacks for small AES-[4]. From
Table 7, we evaluate the maximum number of rounds that the proposed attacks can be successful
is 1. From the precisely calculated linear/differential probabilities, the maximum number of rounds
that the differential attack can be successful is 3 and that of the linear attack is also 3. Similarly, we
compare the proposed attacks and classical linear/differential attacks for small TWINE-[4]. We dis-
covered that the proposed attack can be successful for a maximum of 3 rounds with the differential
attack lasting 7 rounds and the linear attack lasting 7 rounds. In summary, for small AES-[4] and
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Table 8: Maximum differential probabilities of small PRESENT-[4], small AES-[4], and small
TWINE-[4].

Round
Maximum differential probability

small PRESENT-[4] small AES-[4] small TWINE-[4]

1 2−2 2−2 20

2 2−4 2−10 2−2

3 2−8 2−14 2−4

4 2−12 2−20 2−6

5 2−14 – 2−8

6 2−16 – 2−12

7 – – 2−14

8 – – 2−16

9 – – –

small TWINE-[4], the maximum number of rounds that the proposed attacks can be successful is
less than that of the classical linear/differential attacks. It should be noted here that the proposed
attacks realize much stronger ciphertext prediction and plaintext recovery than the distinguishing
attacks of the classical linear/differential cryptanalysis. Nevertheless, for small TWINE-[4], the
maximum number of rounds that the proposed attacks can be successful is significantly smaller
than that of the classical linear/differential attacks. This cause will be clarified in a future study.

4.1.3 Whitebox Analysis with the Smaller Amount of Training Data

To perform the whitebox analysis with the smaller amount of training data against three toy block
ciphers (i.e., 1-, 2-, 3-, 4-round small PRESENT-[4], 1-round small AES-[4], and 1-, 2-, 3-round
small TWINE-[4]), we conduct additional experiments in the same procedure described above, but
we vary the amount of training data in the range of from 22 to 214 and use all the remaining
plaintexts or ciphertexts as testing data. In these additional experiments, we use the optimized
hyperparameters obtained in Experiment 1 (see Table 7).

Table 10 shows the minimum amount of training data required for successful ciphertext predic-
tion/plaintext recovery against three toy block ciphers. In addition, Table B.1 in Appendix B shows
more detailed results regarding the average success probabilities of ciphertext prediction/plaintext
recovery by the proposed attacks against three toy block ciphers with a block size of 16 bits. If
the predicted probability is greater than 2−15, we consider the proposed attacks to be successful4.
Consequently, we demonstrate successful ciphertext prediction/plaintext recovery with a smaller
amount of training data than 215 against three toy block ciphers, with the exception of the 4-round
small PRESENT-[4].

4.2 Application to Block Ciphers with Large Block Sizes

In this subsection, we apply the proposed attacks to three block ciphers with large block sizes
based on the preliminary experiments as described in Sect. 4.1. To examine the evaluation results
obtained by our whitebox analysis against three toy block ciphers can be applied to the target

4This assumption is strictly incorrect, but we use it for simple discussion.
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Table 9: Maximum linear probabilities of small PRESENT-[4], small AES-[4], and small TWINE-
[4].

Round
Maximum linear probability

small PRESENT-[4] small AES-[4] small TWINE-[4]

1 2−2 2−2 20

2 2−4 2−10 2−2

3 2−8 2−14 2−4

4 2−12 2−20 2−6

5 2−16 – 2−8

6 – – 2−12

7 – – 2−14

8 – – 2−16

9 – – –

Table 10: Minimum amount of training data required for successful ciphertext prediction/plaintext
recovery using the proposed attacks against three toy block ciphers with a block size of 16 bits.
We use the optimized hyperparameters obtained in Experiment 1 (see Table 7). CP:=Ciphertext
Prediction and PR:=Plaintext Recovery.

Cipher Round Attack # training data Succ. prob.

small 1 CP 23 2−14.76

PRESENT-[4] PR 23 2−13.40

2 CP 24 2−14.57

PR 24 2−14.56

3 CP 211 2−12.11

PR 211 2−14.55

4 CP 215 2−5.63

PR 215 2−14.50

small 1 CP 29 2−13.32

AES-[4] PR 28 2−14.82

small 1 CP 24 2−13.58

TWINE-[4] PR 23 2−14.93

2 CP 211 2−11.73

PR 211 2−13.18

3 CP 214 2−13.54

PR 214 2−13.02

block ciphers with large block sizes, we conduct Experiment 2 in the same procedure as described
in Sect. 4.1.1, but we change the block sizes of the target block ciphers, e.g., 32 and 64 bits. In our
experiments, we use the optimized hyperparameters obtained in Experiment 1 (see Table 7).
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Table 11: Minimum amount of training data required for successful ciphertext prediction/plaintext
recovery using the proposed attacks against three block ciphers with a block size of 32 bits. We use
the optimized hyperparameters obtained in Experiment 1 (see Table 7). CP:=Ciphertext Prediction
and PR:=Plaintext Recovery.

Cipher Round Attack # training data Succ. prob.

small 1 CP 210 2−19.47

PRESENT-[8] PR 29 2−22.64

2 CP 211 2−21.64

PR 214 2−1.20

3 CP 215 2−6.34

PR 217 2−2.24

4 CP N/A N/A

PR N/A N/A

small 1 CP 212 2−17.78

AES-[8] PR 211 2−22.64

small 1 CP 211 2−20.32

TWINE-[8] PR 210 2−21.64

2 CP 214 2−20.32

PR 214 2−14.49

3 CP 216 2−22.64

PR 217 2−19.18

Tables 11 and 12 show the minimum amount of training data required for successful ciphertext
prediction/plaintext recovery against three block ciphers with block sizes of 32 and 64 bits, respec-
tively. We vary the amount of training data in the range of from 28 to 217 or from 210 to 219 and
use 216 of the remaining plaintexts or ciphertexts as testing data against three toy block ciphers
with block sizes of 32 or 64 bits, respectively; thus, if the predicted probability is greater than the
threshold derived by equation (24n − 2x)

−1
shown in Sect. 3.3, we consider the proposed attacks to

be successful for both cases. In this case, those thresholds are (232− 28)−1 to (232− 217)−1 or from
(264 − 210)−1 to (264 − 219)−1. In addition, Tables C.1 and C.2 in Appendix C show more detailed
results regarding the average success probabilities of ciphertext prediction/plaintext recovery by
the proposed attacks against three block ciphers with block sizes of 32 and 64 bits.

From Tables 11 and C.1, we report that the average success probabilities of ciphertext predic-
tion/plaintext recovery by the proposed attacks against the target block ciphers with a block size
of 32 bits are not zero, excluding the 4-round small PRESENT-[8]. Expressed differently, this fact
should indicate that the proposed attacks against the target block ciphers with large block sizes can
be successful by simply increasing the amount of training data; thus, we consider that the proposed
attack against the target block ciphers with additional rounds could be successful by using more
training data than 217.

From Tables 12 and C.2, we can confirm that except for the 4-round small PRESENT-[16] and
the 3-round small TWINE-[16], the average success probabilities of ciphertext prediction/plaintext
recovery by the proposed attacks against the target block ciphers with a block size of 64 bits are
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Table 12: Minimum amount of training data required for successful ciphertext prediction/plaintext
recovery using the proposed attacks against three block ciphers with a block size of 64 bits. We use
the optimized hyperparameters obtained in Experiment 1 (see Table 7). CP:=Ciphertext Prediction
and PR:=Plaintext Recovery.

Cipher Round Attack # training data Succ. prob.

small 1 CP 213 2−18.00

PRESENT-[16] PR 214 2−17.68

(PRESENT) 2 CP 214 2−6.64

PR 216 2−2.27

3 CP 217 2−1.30

PR 219 2−3.14

4 CP N/A N/A

PR N/A N/A

small AES-[16] 1 CP 215 2−0.24

(AES-like) PR 215 2−0.06

small 1 CP 215 2−0.30

TWINE-[16] PR 214 2−15.91

(TWINE-like) 2 CP 219 2−12.50

PR 219 2−7.05

3 CP N/A N/A

PR N/A N/A

not zero. In these cases, we consider that the proposed attacks against the target block ciphers
with additional rounds could be successful with more training data than 219.

As demonstrated by these results, the proposed attacks can be performed regardless of the block
size of the target block ciphers by simply increasing the amount of training data. In addition, as
the amount of training data increases, the larger the block size, the greater the rate of increase
in the success probability (see Tables B.1, C.1, and C.2 for more details). Therefore, we consider
that by increasing the amount of training data, the whitebox analysis against block ciphers with
large block sizes can be regarded as equal to or greater than the whitebox analysis against toy
block ciphers with a block size of 16 bits. As discussed in Sect. 4.1.2, the maximum number of
rounds that the proposed attacks can be successful against small PRESENT-[4] is equal to that of
the classical linear/differential attacks, while the maximum number of rounds that the proposed
attacks can be successful against small AES-[4] and small TWINE-[4] is less than that of the
classical linear/differential attacks. Nevertheless, we consider that the whitebox analysis against
the target block ciphers with large block sizes can be summarized as follows, based on the above
consideration:

• For small PRESENT-[16] (i.e., PRESENT), the maximum number of rounds that the pro-
posed attacks can be successful is at least equal to that of the classical linear/differential
attacks.

• For small AES-[16] (i.e., AES-like) and small TWINE-[16] (i.e., TWINE-like), we conjecture
that the maximum number of rounds that the proposed attacks can be successful also be-
comes equal to that of classical linear/differential attacks. To clarify the correctness of this
conjecture, we should conduct additional experiments with a larger amount of training data
than 219. This will be our future work.
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4.3 Accuracy of Experimental Results

In Sect. 4.1, we have presented the experimental results of Experiment 1 with 20 secret keys
and Experiment 2 with 100 secret keys. These experimental results may appear to be correct.
However, because of the small number of secret keys used in these experiments, we should have
an additional discussion to ensure that the experimental results are accurate. To this end, this
subsection shows two additional experimental results on the 3-round small TWINE-[4] with 100
secret keys for Experiment 1 and 10000 secret keys for Experiment 2, respectively. The following
explains why we chose the 3-round small TWINE-[4] for confirming the accuracy: If we choose a
target with a probability of 1 or 2−15, it appears difficult to see how the number of secret keys
affects the accuracy. As shown in Table 7, the average success probabilities of ciphertext prediction
and plaintext recovery by the proposed attacks in the 3-round small TWINE-[4] are approximately
2−10.46 and 2−9.72, respectively. We choose the 3-round small TWINE-[4] as the best target for
additional experiments because these probabilities possibly vary significantly if the number of keys
affects the accuracy.

4.3.1 Experimental Procedure

We explain the following two additional experiments, i.e., Experiment 1’ and Experiment 2’.

Experiment 1’: We use the same procedures as in Experiment 1 to optimize the hyperparam-
eters for the 3-round small TWINE-[4]. Unlike Experiment 1, we use plaintext/ciphertext pairs
generated by 100 secret keys rather than 20 secret keys in this experiment. In the hyperparameter
optimization, we examine the impact of the number of secret keys used in Experiment 1’ on the
experimental results.

Experiment 2’: We obtain the average success probabilities of ciphertext prediction/plaintext
recovery for the 3-round small TWINE-[4] in the same procedures of Experiment 2 using the
hyperparameters optimized by Experiment 1 (see Table 7). Unlike Experiment 2, we use the
plaintext/ciphertext pairs generated by 10000 secret keys rather than 100 secret keys. In the
ciphertext prediction/plaintext recovery, we explore the influence of the number of secret keys used
in Experiment 2’ on the experimental results.

4.3.2 Experimental Results.

Table 13 shows a comparison of the experimental results in Experiment 1 and Experiment 1’ for
the 3-round small TWINE-[4]. From the table, in the hyperparameter optimization for ciphertext
prediction, the highest average success probabilities obtained from Experiment 1 and Experiment
1’ are nearly equal, such as 2−11.42 and 2−11.26. Conversely, in the hyperparameter optimization
for the plaintext recovery, the highest average success probability obtained from Experiment 1
is much higher than that obtained from Experiment 1’, such as 2−7.80 and 2−12.82. As per these
experimental results, optimizing the hyperparameters with a small number of secret keys is sufficient
to obtain hyperparameters with the best average success probability; therefore, we consider that
the hyperparameter optimization presented in Sect. 4.1 has led to reliable results.

Table 14 shows a comparison of experimental results in Experiment 2 and Experiment 2’ for
the 3-round small TWINE-[4]. We can see from the table that in both ciphertext prediction and
plaintext recoveries, the average success probabilities obtained from Experiment 2 and Experiment
2’ are nearly equal , such as 2−10.46 and 2−10.64 in the ciphertext prediction and 2−9.72 and 2−9.22 in
the plaintext recovery. According to these experimental results, the additional experiments with a
small number of secret keys are sufficient to obtain the best average success probability; therefore,
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Table 13: Comparison of the experimental results in Experiment 1 and Experiment 1’ for the 3-
round small TWINE-[4].

Category

of Attack
# keys # trials

# nodes of

hidden layer

# layers of

hidden layer

Initial

learning rate
Optimizer

Succ.

prob.
Ref.

Ciphertext 20 100 300 2 0.001 RMSprop 2−11.42 Experiment 1

Prediction 100 40 300 7 0.001 RMSprop 2−11.26 Experiment 1’

Plaintext 20 100 400 2 0.001 RMSprop 2−7.80 Experiment 1

Recovery 100 40 100 4 0.001 RMSprop 2−12.82 Experiment 1’

Table 14: Comparison of experimental results in Experiment 2 and Experiment 2’ for the 3-round
small TWINE-[4]. We use the optimized hyperparameters obtained in Experiment 1 (see Table 7).

Attack # keys Succ. prob. Ref.

Ciphertext 100 2−10.46 Experiment 2

Prediction 10000 2−10.64 Experiment 2’

Plaintext 100 2−9.72 Experiment 2

Recovery 10000 2−9.22 Experiment 2’

we consider that the ciphertext prediction/plaintext recovery presented in Sects. 4.1 and 4.2 has
led to reliable results.

5 Extended Whitebox Analysis on Small PRESENT-[4]

As shown in Table 7, the average success probability of ciphertext prediction by the proposed
attack on the 4-round small PRESENT-[4] is approximately 29 times greater than that of plaintext
recovery. However, the security of the encryption and decryption is thought to be equivalent in
terms of the linear/differential probabilities on small PRESENT-[4]; thus, the experimental result of
the proposed attacks on the 4-round small PRESENT-[4] seems contrary to intuition. We speculate
that this can be a deep learning specific characteristic.

In this section, we redesign the 4-round small PRESENT-[4] by swapping or replacing the
internal components, e.g., S-box and bit permutation, and execute Experiment 1 and Experiment
2 against the new designs of the 4-round small PRESENT-[4] to reveal the relationship between
the designs of block ciphers and average success probability of the proposed attacks.

5.1 Experimental Procedure

We discuss two types of experiments to investigate the average success probabilities of ciphertext
prediction and plaintext recovery by the proposed attacks under the conditions that (1) the sub-
stitution layer (sLayer) and its inverse function (sLayer-inv) are replaced, and (2) the order of the
sLayer and permutation layer (pLayer) is swapped in the encryption and decryption algorithms.
The target toy block ciphers are the 4-round small PRESENT-[4] and the 2-round small AES-[4],
and small TWINE-[4] is excluded from the target of these experiments. This is because the Feistel
block ciphers generally use the same components for both encryption and decryption algorithms.
The order of the sLayer and pLayer is the same in both the encryption and decryption algorithms,
and sLayer-inv is not used in neither the encryption nor decryption algorithms. Rather than the
experiments described in this section, we should compare the maximum number of rounds that the
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Table 15: Average success probabilities when swapping or replacing components on the 4-round
small PRESENT-[4]. We use 215 training data and 215 testing data. CP:=Ciphertext Prediction
and PR:=Plaintext Recovery.

Category # nodes of # layers of Initial
Optimizer

Succ.
of Attack hidden layer hidden layer learning rate prob.

Original small PRESENT-[4]
CP 300 4 0.01 Adam 2−5.63

PR 300 1 0.01 Adam 2−14.50

Replacing the components
(Enc: sLayer-inv → pLayer)

CP 200 4 0.01 Adam 2−3.75

(Dec: pLayer → sLayer)
PR 500 1 0.001 Adam 2−12.13

Swapping the components
(Enc: pLayer → sLayer)

CP 500 1 0.001 Adam 2−12.21

(Dec: sLayer-inv → pLayer)
PR 400 7 0.001 Adam 2−13.74

proposed attacks can be successful against small TWINE-[4] (a type-II generalized Feistel cipher)
to that on the other types of the Feistel block ciphers, such as classical, unbalanced, alternating,
type-I and type-III generalized Feistel ciphers. This will be our future study.

5.2 Experimental Results

Table 15 shows experimental results for new designs of the 4-round small PRESENT-[4]. The aver-
age success probability of ciphertext prediction is greater than that of the original small PRESENT-
[4] when the sLayer is replaced with the sLayer-inv, as shown in the table. However, when the order
of the sLayer and pLayer is swapped, the average success probability of ciphertext prediction is
less than that of the original small PRESENT-[4]. We believe that swapping the component order
affects the average success probabilities of the proposed attacks because the difference in these
average success probabilities is relatively large. Given that swapping or replacing components does
not affect linear/differential probabilities, we expect that our results can be an important stepping
stone for designing deep learning-resistant symmetric-key ciphers.

Nevertheless, the average success probability of plaintext recovery for both cases is greater than
that of the original small PRESENT-[4]; this result tends to differ from ciphertext prediction.
Because the probabilities are nearly 2−15, the results require more detailed analyses to increase
reliability, which we leave as a future work.

In the experimental results of the 2-round small AES-[4], all average success probabilities for
ciphertext prediction/plaintext recovery by the proposed attacks are less than 2−15. Therefore,
these results do not show whether swapping or replacing the components has any effect on the
average success probabilities of the proposed attacks in the 2-round small AES-[4].

6 Deeper Look into Whitebox Analysis Using Weak S-boxes

In this section, we look deeper into deep learning specific characteristics and extend the whitebox
analysis to explore clues to facilitate the design of symmetric-key cryptographic algorithms that
are secure against deep learning-based attacks. To this end, we construct two weak variants of
small PRESENT-[4] by replacing the original S-box with known weak S-boxes, as shown in Sect. 2,
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Table 16: Average success probabilities of ciphertext prediction/plaintext recovery using the pro-
posed attacks against small PRESENT-[4] with weak S-box1. We use 215 training data and the
remaining 215 testing data. CP:=Ciphertext Prediction and PR:=Plaintext Recovery.

Cipher
Category # nodes of # layers of Initial

Optimizer
Succ.

Round
of Attack hidden layer hidden layer learning rate prob.

small 1 CP 200 1 0.001 Adam 1

PRESENT-[4] PR 100 3 0.01 Adam 1

with 2 CP 500 7 0.001 RMSprop 1

weak S-box1 PR 200 4 0.001 RMSprop 1

3 CP 200 4 0.001 RMSprop 2−0.01

PR 300 1 0.01 RMSprop 2−0.01

4 CP 500 1 0.01 RMSprop 2−0.01

PR 300 7 0.001 Adam 2−0.97

5 CP 500 3 0.001 Adam 2−5.01

PR 500 7 0.001 Adam 2−4.52

6 CP 200 4 0.01 Adam 2−7.15

PR 500 7 0.001 Adam 2−7.00

7 CP 500 6 0.001 RMSprop 2−9.34

PR 300 3 0.01 Adam 2−9.75

8 CP 400 7 0.001 Adam 2−11.04

PR 500 6 0.001 Adam 2−10.90

9 CP 400 1 0.001 RMSprop 2−12.51

PR 200 2 0.001 Adam 2−12.84

10 CP 500 1 0.001 RMSprop 2−13.90

PR 300 7 0.001 Adam 2−13.54

11 CP 200 6 0.001 RMSprop 2−14.36

PR 500 7 0.001 RMSprop 2−14.66

12 CP 100 3 0.001 Adam 2−15.40

PR 300 2 0.001 RMSprop 2−14.99

13 CP 200 3 0.01 RMSprop 2−15.82

PR 400 6 0.001 RMSprop 2−15.69

and execute Experiment 1 and Experiment 2 against these variants to reveal the influence of the
differences in the characteristics of three S-boxes (i.e., the original S-box and two weak S-boxes)
on deep learning specific characteristics. Thus, the experimental results will provide more insight
into the relationship between the classical and our deep learning-based attacks.

Experimental Results: We have executed Experiment 1 and Experiment 2 against two weak
variants of small PRESENT-[4] according to the experimental procedure described in Sect. 4.1.1.
Tables 16 and 17 shows the results of Experiment 2 using the optimized hyperparameters obtained
in Experiment 1. As with the discussion in Sect. 4.1.2, we compare the ability of the precisely
computed classical attacks with that of the proposed attacks.

From these tables, the proposed attacks succeed up to 11 rounds for ciphertext prediction and
plaintext recovery against small PRESENT-[4] with weak S-box1 and its success probability is

21



Table 17: Average success probabilities of ciphertext prediction/plaintext recovery using the pro-
posed attacks against small PRESENT-[4] with weak S-box2. We use 215 training data and the
remaining 215 testing data. CP:=Ciphertext Prediction and PR:=Plaintext Recovery.

Cipher
Category # nodes of # layers of Initial

Optimizer
Succ.

Round
of Attack hidden layer hidden layer learning rate prob.

small 1 CP 100 2 0.001 Adam 1

PRESENT-[4] PR 400 1 0.001 Adam 1

with 2 CP 300 5 0.001 Adam 1

weak S-box2 PR 200 5 0.001 Adam 1

3 CP 300 4 0.001 RMSprop 2−0.01

PR 500 4 0.001 RMSprop 2−0.01

4 CP 500 1 0.01 RMSprop 2−0.03

PR 200 4 0.01 Adam 2−0.97

5 CP 300 3 0.01 Adam 2−5.80

PR 500 5 0.001 RMSprop 2−8.74

6 CP 500 7 0.001 RMSprop 2−10.72

PR 500 7 0.001 Adam 2−11.16

7 CP 300 1 0.001 Adam 2−13.04

PR 500 6 0.001 Adam 2−13.01

8 CP 500 6 0.001 RMSprop 2−14.35

PR 500 2 0.001 Adam 2−14.57

9 CP 100 4 0.001 Adam 2−15.52

PR 500 7 0.0001 Adam 2−15.92

nearly 2−14. Thus, we consider that the proposed attacks can be successful for a maximum of 11
rounds on small PRESENT-[4] with weak S-box1. Similarly, the proposed attacks succeed up to
8 rounds for ciphertext prediction and plaintext recovery against small PRESENT-[4] with weak
S-box2 and its success probability is nearly 2−14. Thus, we also consider that the proposed attacks
can be successful for a maximum of 8 rounds on small PRESENT-[4] with weak S-box2.

On the other hand, by computing the exact differential and linear probabilities for small
PRESENT-[4] with weak S-box1, weak S-box2, and original S-box (see Tables 18 and 19), we
obtain the maximum number of attackable rounds for the classical attacks and then compare it
with the number of attackable rounds for the deep learning-based attacks (see Table 20). This
comparison shows that the number of attackable rounds for the deep learning-based attacks is equal
to the higher of the maximum number of attackable rounds for the two classical attacks (differential
and linear attacks). In other words, we consider that the deep learning-based attacks respond to
the weaker characteristic when the target cipher is vulnerable to more than one classical attack.

From these experimental results, we consider that deep learning-based output prediction attacks
will make it easier for anyone to estimate the resistance to differential and linear attacks, even if
they have no knowledge of the target cryptographic algorithms or cryptanalysis methods.
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Table 18: Maximum differential probabilities of small PRESENT-[4] with weak S-boxes.

Round
Maximum differential probability

small PRESENT-[4] with weak S-box 1 small PRESENT-[4] with weak S-box 2

1 2−0.6 2−1

2 2−2.8 2−4

3 2−4.2 2−6

4 2−5.6 2−8

5 2−7.0 2−10

6 2−8.4 2−12

7 2−9.8 2−14

8 2−11.2 2−16

9 2−12.6 –

10 2−14.0 –

11 2−15.4 –

12 2−16.8 –

Table 19: Maximum linear probabilities of small PRESENT-[4] with weak S-boxes.

Round
Maximum linear probability

small PRESENT-[4] with weak S-box 1 small PRESENT-[4] with weak S-box 2

1 2−0.8 2−0.8

2 2−3.2 2−2.4

3 2−4.8 2−4.4

4 2−6.4 2−7.2

5 2−8.0 2−9.2

6 2−9.6 2−10.8

7 2−11.2 2−12.8

8 2−12.8 2−15.6

9 2−14.4 2−17.6

10 2−16.0 –

Table 20: Maximum attackable round of small PRESENT-[4] with weak/original S-boxes.
CP:=Ciphertext Prediction and PR:=Plaintext Recovery.

Cipher
Maximum attackable round

Proposed attack Differential attack Linear attack

small PRESENT-[4] with weak S-box 1 11 (CP, PR) 11 9

small PRESENT-[4] with weak S-box 2 8 (CP, PR) 7 8

small PRESENT-[4] with original S-box 5 (CP), 4 (PR) 5 4
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7 Conclusion

In this study, we first presented deep learning-based output prediction attacks on three block ciphers
with a block size of 64 bits in a blackbox setting. We clarified the following results by examining
the relationship between the ability of deep learning-based attacks and classical attacks such as
linear/differential attacks:

• For PRESENT, the maximum number of rounds that the proposed attack can be successful
is at least equal to that of classical linear/differential attacks.

• For AES-like and TWINE-like ciphers, we conjecture that the maximum number of rounds
that the proposed attacks can be successful also becomes equal to that of classical lin-
ear/differential attacks when the amount of training data is increased more.

Next, we redesigned the 4-round small PRESENT-[4] by swapping or replacing the internal
components, and we used the whitebox analysis technique to examine the relationship between the
new target cipher designs and the success probability of the proposed attacks. Consequently, we
clarified that swapping or replacing the internal components did not affect success probabilities of
the classical linear/differential attacks, whereas it affects the average success probabilities of the
proposed deep learning-based attacks; thus, we have obtained a deep learning specific character-
istic. The obtained results are expected to be a foundation for designing deep learning-resistant
symmetric-key ciphers.

Finally, to look deeper into deep learning specific characteristics, we employed two weak vari-
ants of small PRESENT-[4], and we extended the whitebox analysis to explore clues to facilitate
the design of symmetric-key cryptographic algorithms that are secure against deep learning-based
attacks. We clarified the following results by examining the relationship between the ability of deep
learning-based attacks and classical attacks, e.g., linear/differential attacks:

• Our deep learning-based whitebox analysis achieved the same attack capability as classical
methods even when the S-box of the target cipher was changed to a weak one.

• We found that the success probability of our deep learning-based whitebox analysis tends to
be affected by the success probability of classical cryptanalysis methods.

• We believe that output prediction attacks using deep learning will make it easier to estimate
the resistance to differential and linear attacks, even without possessing knowledge about the
target cryptographic algorithm or cryptanalysis methods.

We have the following future works:

• Clarify why the maximum number of rounds that the proposed attacks can be successful is
significantly smaller than that of the linear/differential attacks for small TWINE-[4].

• Clarify why swapping or replacing internal components affects the average success probabili-
ties of our deep learning-based attacks, although it does not affect those of linear/differential
attacks.

• Compare the maximum number of rounds that the proposed attacks can be successful against
TWINE-like cipher (a type-II generalized Feistel cipher) to that of the other types of the
Feistel block ciphers, such as classical, unbalanced, alternating, type-I and type-III generalized
Feistel ciphers.
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• Clarify whether the maximum number of rounds that the proposed attacks can be success-
ful against AES-like and TWINE-like ciphers is equal to that of classical linear/differential
attacks by conducting additional experiments with a larger amount of training data than 219.

• Clarify why differences are observed in the average success probabilities regarding the under-
lying optimizer.

• Clarify how to feedback our results for designing deep learning-resistant symmetric-key ci-
phers.
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A Experimental Results Using the CNN

To confirm that the use of the LSTM induces better experimental results than that of the CNN,
we conducted experiments using the CNN in the same procedure described in Sect. 4.1.1. In
our experiments, we optimize activation functions in addition to the hyperparameters shown in
Table 5. The following is the search range for activation functions: Tanh, Sigmoid, and ReLU.
For developing CNN models by Keras, e.g., model.add(Conv1D(...)), we specify only filters,
kernel size, activation, and input shape as its arguments5.

Table A.1 shows experimental results using the CNN. Consequently, we clarify the following
facts by comparing the experimental results using the LSTM and CNN based on Tables 7 and A.1:

• For small PRESENT-[4], the maximum number of rounds that the proposed attacks using
the LSTM and CNN can be successful is 4 and 3, respectively.

• For small AES-[4], the maximum number of rounds that the proposed attacks using the LSTM
and CNN can be successful is 1 for each case. In addition, the average success probabilities of
ciphertext prediction (plaintext recovery) by the proposed attacks against the 1-round small
AES-[4] using the LSTM and CNN are 1 (1) and 2−11.88 (2−11.83), respectively.

• For small TWINE-[4], the maximum number of rounds that the proposed attacks using the
LSTM and CNN can be successful is 3 and 1, respectively.

To summarize the foregoing facts, we conclude that the use of the LSTM induces better experi-
mental results of all the target block ciphers compared to the use of the CNN.

5https://keras.io/ja/layers/convolutional/
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Table A.1: Average success probabilities of ciphertext prediction/plaintext recovery using the pro-
posed attacks against three toy block ciphers with a block size of 16 bits. We employ the CNN
and use 215 training data as well as remaining 215 testing data. CP:=Ciphertext Prediction and
PR:=Plaintext Recovery.

Cipher
Category # nodes of # layers of Initial

Optimizer
Succ.

Round
of Attack hidden layer hidden layer learning rate

Activation
prob.

small 1 CP 100 5 0.001 Adam Tanh 1

PRESENT-[4] PR 300 3 0.0001 RMSprop Tanh 1

2 CP 200 1 0.01 SGD ReLU 2−11.72

PR 400 3 0.001 Adam Sigmoid 2−11.69

3 CP 200 2 0.01 RMSprop ReLU 2−14.58

PR 300 2 0.0001 RMSprop Sigmoid 2−14.57

4 CP 300 7 0.0001 Adam Tanh 2−15.02

PR 200 1 0.01 SGD ReLU 2−15.20

small 1 CP 100 4 0.0001 Adam ReLU 2−11.88

AES-[4] PR 400 5 0.0001 Adam Tanh 2−11.83

2 CP 100 4 0.01 SGD ReLU 2−15.76

PR 100 7 0.001 RMSprop Sigmoid 2−15.00

small 1 CP 300 2 0.001 RMSprop Sigmoid 2−8.01

TWINE-[4] PR 500 5 0.01 RMSprop ReLU 2−8.03

2 CP 100 4 0.0001 SGD Tanh 2−15.86

PR 300 2 0.0001 RMSprop Tanh 2−15.62
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B More Detailed Results in Sect. 4.1.3

Table B.1 details the experimental results shown in Table 10 (refer to Sect. 4.1.3 for more details).
If the predicted probability is greater than 2−15, we consider the proposed attacks to be successful6.

6This assumption is strictly incorrect, but we use it for simple discussion.
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C More Detailed Results in Sect. 4.2

Tables C.1 and C.2 detail the experimental results shown in Tables 11 and 12, respectively (refer to
Sect. 4.2 for more details). We vary the amount of training data in the range of from 28 to 217 or
from 210 to 219 and use 216 of the remaining plaintexts or ciphertexts as testing data against three
toy block ciphers with block sizes of 32 or 64 bits, respectively; thus, if the predicted probability
is greater than the threshold derived by equation (24n − 2x)

−1
shown in Sect. 3.3, we consider the

proposed attacks to be successful for both cases. In this case, those thresholds are (232 − 28)−1 to
(232 − 217)−1 or from (264 − 210)−1 to (264 − 219)−1.

Table C.1: Average success probabilities of ciphertext prediction/plaintext recovery using the pro-
posed attacks against three block ciphers with a block size of 32 bits. We vary the amount of
training data in the range of from 28 to 217 and use 216 of the remaining plaintexts or ciphertexts
as testing data. Moreover, we use the optimized hyperparameters obtained in Experiment 1 (see
Table 7). CP:=Ciphertext Prediction and PR:=Plaintext Recovery.

Cipher Round Attack
Success probability for each amount of training data

28 29 210 211 212 213 214 215 216 217

small 1 CP 0 0 2−19.47 2−13.47 2−0.51 1 1 1 1 1

PRESENT-[8] PR 0 2−22.64 2−20.64 2−13.76 2−7.61 2−1.80 2−0.01 2−0.01 2−0.01 2−0.01

2 CP 0 0 0 2−21.64 2−17.35 2−6.22 2−0.57 2−0.54 2−0.05 2−0.02

PR 0 0 0 0 0 0 2−1.20 2−0.06 2−0.13 2−0.05

3 CP 0 0 0 0 0 0 0 2−6.34 2−3.32 2−2.35

PR 0 0 0 0 0 0 0 0 0 2−2.24

4 CP 0 0 0 0 0 0 0 0 0 0

PR 0 0 0 0 0 0 0 0 0 0

small 1 CP 0 0 0 0 2−17.78 2−8.25 2−0.12 2−0.01 2−0.01 1

AES-[8] PR 0 0 0 2−22.64 2−20.64 2−13.43 2−0.01 2−0.01 2−0.01 2−0.01

small 1 CP 0 0 0 2−20.32 2−17.47 2−4.41 2−0.01 2−0.01 2−0.01 2−0.01

TWINE-[8] PR 0 0 2−21.64 2−16.45 2−12.62 2−3.86 2−1.69 2−0.76 2−0.76 2−0.27

2 CP 0 0 0 0 0 0 2−20.32 2−4.97 2−4.84 2−2.84

PR 0 0 0 0 0 0 2−14.49 2−16.62 2−8.78 2−12.68

3 CP 0 0 0 0 0 0 0 0 2−22.64 2−15.71

PR 0 0 0 0 0 0 0 0 0 2−19.18
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Table C.2: Average success probabilities of ciphertext prediction/plaintext recovery using the pro-
posed attacks against three block ciphers with a block size of 64 bits. We vary the amount of
training data in the range of from 210 to 219 and use 216 of the remaining plaintexts or ciphertexts
as testing data. Moreover, we use the optimized hyperparameters obtained in Experiment 1 (see
Table 7). CP:=Ciphertext Prediction and PR:=Plaintext Recovery.

Cipher Round Attack
Success probability for each amount of training data

210 211 212 213 214 215 216 217 218 219

small 1 CP 0 0 0 2−18.00 2−0.01 1 1 – – –

PRESENT-[16] PR 0 0 0 0 2−17.68 2−8.04 2−0.37 2−0.01 2−0.01 –

(PRESENT) 2 CP 0 0 0 0 2−6.64 2−2.64 2−2.31 2−1.68 2−0.60 –

PR 0 0 0 0 0 0 2−2.27 2−0.39 2−0.08 –

3 CP 0 0 0 0 0 0 0 2−1.30 2−1.68 2−0.74

PR 0 0 0 0 0 0 0 0 0 2−3.14

4 CP 0 0 0 0 0 0 0 0 0 0

PR 0 0 0 0 0 0 0 0 0 0

small AES-[16] 1 CP 0 0 0 0 0 2−0.24 2−0.06 2−0.01 2−0.01 –

(AES-like) PR 0 0 0 0 0 2−0.06 2−0.01 2−0.01 2−0.01 –

small 1 CP 0 0 0 0 0 2−0.30 2−0.04 2−0.01 2−0.01 –

TWINE-[16] PR 0 0 0 0 2−15.91 2−5.72 2−5.16 2−3.99 2−2.45 2−1.16

(TWINE-like) 2 CP 0 0 0 0 0 0 0 0 0 2−12.50

PR 0 0 0 0 0 0 0 0 0 2−7.05

3 CP 0 0 0 0 0 0 0 0 0 0

PR 0 0 0 0 0 0 0 0 0 0
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