5,101 research outputs found

    Warm absorber, reflection and Fe K line in the X-ray spectrum of IC 4329A

    Get PDF
    Results from the X-ray spectral analysis of the ASCA PV phase observation of the Seyfert 1 galaxy IC 4329A are presented. We find that the 0.4 - 10 keV spectrum of IC 4329A is best described by the sum of a steep (Γ1.98\Gamma \sim 1.98) power-law spectrum passing through a warm absorber plus a strong reflection component and associated Fe K line, confirming recent results (Madejski et al. 1995, Mushotsky et al. 1995). Further cold absorption in excess of the Galactic value and covering the entire source is also required by the data, consistent with the edge-on galactic disk and previous X-ray measurements. The effect of the warm absorber at soft X-ray energies is best parameterized by two absorption edges, one consistent with OVI, OVII or NVII, the other consistent with OVIII. A description of the soft excess in terms of blackbody emission, as observed in some other Seyfert 1 galaxies, is ruled out by the data. A large amount of reflection is detected in both the GIS and SIS detectors, at similar intensities. We find a strong correlation between the amount of reflection and the photon index, but argue that the best solution with the present data is that given by the best statistical fit. The model dependence of the Fe K line parameters is also discussed. Our best fit gives a slightly broad (σ0.11±0.08\sigma \simeq 0.11 \pm 0.08 keV) and redshifted (E 6.20±0.07\simeq 6.20 \pm 0.07 keV) Fe K line, with equivalent width \simeq 89 ±\pm 33 eV. The presence of a weak Fe K line with a strong reflection can be reconciled if one assumes iron underabundances or ionized reflection. We also have modeled the line with a theoretical line profile produced by an accretion disk. This yields results in better agreement with the constraints obtained from the reflection component.Comment: Accepted for publication in The Astrophysical Journal, 10th February 1996 issue; 24 pages and 8 figures + 1 table tared, compressed and uuencoded (with uufiles

    A numerical code to study the variability of Blazar emission

    Full text link
    We present a numerical code, written in C, which can be used to simulate or to analyze the emission of Blazars over the entire electromagnetic spectrum. Our code can reproduce the following features: synchrotron emission, inverse Compton emission (Thomson Klein-Nishina regime) external Compton emission, accretion disk variability using a Cellular Automata algorithm, temporal evolution of the emitting plasma energy distribution, flaring phenomena, light curves in the rest and in the observer frame (taking account for time crossing effects). In this paper we will show mainly the accretion disk simulation, and the implications in the External Compton scenario.Comment: 4 pages, 2 eps figures. Poster to "The Physics of Relativistic Jets in the CHANDRA and XMM Era" (Bologna CNR). Proceedings to be published in New Astronomy Review

    Asymptotic Flatness in Rainbow Gravity

    Full text link
    A construction of conformal infinity in null and spatial directions is constructed for the Rainbow-flat space-time corresponding to doubly special relativity. From this construction a definition of asymptotic DSRness is put forward which is compatible with the correspondence principle of Rainbow gravity. Furthermore a result equating asymptotically flat space-times with asymptotically DSR spacetimes is presented.Comment: 11 page

    Improved energy resolution for VHE gamma-ray astronomy with systems of Cherenkov telescopes

    Get PDF
    We present analysis techniques to improve the energy resolution of stereoscopic systems of imaging atmospheric Cherenkov telescopes, using the HEGRA telescope system as an example. The techniques include (i) the determination of the height of the shower maximum, which is then taken into account in the energy determination, and (ii) the determination of the location of the shower core with the additional constraint that the direction of the gamma rays is known a priori. This constraint can be applied for gamma-ray point sources, and results in a significant improvement in the localization of the shower core, which translates into better energy resolution. Combining both techniques, the HEGRA telescopes reach an energy resolution between 9% and 12%, over the entire energy range from 1 TeV to almost 100 TeV. Options for further improvements of the energy resolution are discussed.Comment: 13 Pages, 7 figures, Latex. Astroparticle Physics, in pres

    Properties of the cosmological filament between two clusters: A possible detection of a large-scale accretion shock by SuzakuSuzaku

    Get PDF
    We report on the results of a SuzakuSuzaku observation of the plasma in the filament located between the two massive clusters of galaxies Abell 399 and Abell 401. Abell 399 (zz=0.0724) and Abell 401 (zz=0.0737) are expected to be in the initial phase of a cluster merger. In the region between the two clusters, we find a clear enhancement in the temperature of the filament plasma from 4 keV (expected value from a typical cluster temperature profile) to kTkT\sim6.5 keV. Our analysis also shows that filament plasma is present out to a radial distance of 15' (1.3 Mpc) from a line connecting the two clusters. The temperature profile is characterized by an almost flat radial shape with kTkT\sim6-7 keV within 10' or \sim0.8 Mpc. Across rr=8'~from the axis, the temperature of the filament plasma shows a drop from 6.3 keV to 5.1 keV, indicating the presence of a shock front. The Mach number based on the temperature drop is estimated to be M{\cal M}\sim1.3. We also successfully determined the abundance profile up to 15' (1.3 Mpc), showing an almost constant value (ZZ=0.3 solar) at the cluster outskirt. We estimated the Compton yy-parameter to be \sim14.5±1.3×106\pm1.3\times10^{-6}, which is in agreement with PlanckPlanck's results (14-17×106\times10^{-6} on the filament). The line of sight depth of the filament is ll\sim1.1 Mpc, indicating that the geometry of filament is likely a pancake shape rather than cylindrical. The total mass of the filamentary structure is \sim7.7×1013 M\times10^{13}~\rm M_{\odot}. We discuss a possible interpretation of the drop of X-ray emission at the rim of the filament, which was pushed out by the merging activity and formed by the accretion flow induced by the gravitational force of the filament.Comment: 8 pages, 8 figures, accepted for publication in A&

    A Water Tank Cerenkov Detector for Very High Energy Astroparticles

    Get PDF
    Extensive airshower detection is an important issue in current astrophysics endeavours. Surface arrays detectors are a common practice since they are easy to handle and have a 100% duty cycle. In this work we present an experimental study of the parameters relevant to the design of a water Cerenkov detector for high energy airshowers. This detector is conceived as part of the surface array of the Pierre Auger Project, which is expected to be sensitive to ultra high energy cosmic rays. In this paper we focus our attention in the geometry of the tank and its inner liner material, discussing pulse shapes and charge collections.Comment: Accepted in Nucl. Instr. and Meth. A, LaTex 18 pages, 7 figure
    corecore