5,101 research outputs found
Warm absorber, reflection and Fe K line in the X-ray spectrum of IC 4329A
Results from the X-ray spectral analysis of the ASCA PV phase observation of
the Seyfert 1 galaxy IC 4329A are presented. We find that the 0.4 - 10 keV
spectrum of IC 4329A is best described by the sum of a steep () power-law spectrum passing through a warm absorber plus a strong
reflection component and associated Fe K line, confirming recent results
(Madejski et al. 1995, Mushotsky et al. 1995). Further cold absorption in
excess of the Galactic value and covering the entire source is also required by
the data, consistent with the edge-on galactic disk and previous X-ray
measurements. The effect of the warm absorber at soft X-ray energies is best
parameterized by two absorption edges, one consistent with OVI, OVII or NVII,
the other consistent with OVIII. A description of the soft excess in terms of
blackbody emission, as observed in some other Seyfert 1 galaxies, is ruled out
by the data. A large amount of reflection is detected in both the GIS and SIS
detectors, at similar intensities. We find a strong correlation between the
amount of reflection and the photon index, but argue that the best solution
with the present data is that given by the best statistical fit. The model
dependence of the Fe K line parameters is also discussed. Our best fit gives a
slightly broad ( keV) and redshifted (E keV) Fe K line, with equivalent width 89 33 eV.
The presence of a weak Fe K line with a strong reflection can be reconciled if
one assumes iron underabundances or ionized reflection. We also have modeled
the line with a theoretical line profile produced by an accretion disk. This
yields results in better agreement with the constraints obtained from the
reflection component.Comment: Accepted for publication in The Astrophysical Journal, 10th February
1996 issue; 24 pages and 8 figures + 1 table tared, compressed and uuencoded
(with uufiles
A numerical code to study the variability of Blazar emission
We present a numerical code, written in C, which can be used to simulate or
to analyze the emission of Blazars over the entire electromagnetic spectrum.
Our code can reproduce the following features: synchrotron emission, inverse
Compton emission (Thomson Klein-Nishina regime) external Compton emission,
accretion disk variability using a Cellular Automata algorithm, temporal
evolution of the emitting plasma energy distribution, flaring phenomena, light
curves in the rest and in the observer frame (taking account for time crossing
effects). In this paper we will show mainly the accretion disk simulation, and
the implications in the External Compton scenario.Comment: 4 pages, 2 eps figures. Poster to "The Physics of Relativistic Jets
in the CHANDRA and XMM Era" (Bologna CNR). Proceedings to be published in New
Astronomy Review
Asymptotic Flatness in Rainbow Gravity
A construction of conformal infinity in null and spatial directions is
constructed for the Rainbow-flat space-time corresponding to doubly special
relativity. From this construction a definition of asymptotic DSRness is put
forward which is compatible with the correspondence principle of Rainbow
gravity. Furthermore a result equating asymptotically flat space-times with
asymptotically DSR spacetimes is presented.Comment: 11 page
Improved energy resolution for VHE gamma-ray astronomy with systems of Cherenkov telescopes
We present analysis techniques to improve the energy resolution of
stereoscopic systems of imaging atmospheric Cherenkov telescopes, using the
HEGRA telescope system as an example. The techniques include (i) the
determination of the height of the shower maximum, which is then taken into
account in the energy determination, and (ii) the determination of the location
of the shower core with the additional constraint that the direction of the
gamma rays is known a priori. This constraint can be applied for gamma-ray
point sources, and results in a significant improvement in the localization of
the shower core, which translates into better energy resolution. Combining both
techniques, the HEGRA telescopes reach an energy resolution between 9% and 12%,
over the entire energy range from 1 TeV to almost 100 TeV. Options for further
improvements of the energy resolution are discussed.Comment: 13 Pages, 7 figures, Latex. Astroparticle Physics, in pres
Properties of the cosmological filament between two clusters: A possible detection of a large-scale accretion shock by
We report on the results of a observation of the plasma in the
filament located between the two massive clusters of galaxies Abell 399 and
Abell 401. Abell 399 (=0.0724) and Abell 401 (=0.0737) are expected to be
in the initial phase of a cluster merger. In the region between the two
clusters, we find a clear enhancement in the temperature of the filament plasma
from 4 keV (expected value from a typical cluster temperature profile) to
6.5 keV. Our analysis also shows that filament plasma is present out to
a radial distance of 15' (1.3 Mpc) from a line connecting the two clusters. The
temperature profile is characterized by an almost flat radial shape with
6-7 keV within 10' or 0.8 Mpc. Across =8'~from the axis, the
temperature of the filament plasma shows a drop from 6.3 keV to 5.1 keV,
indicating the presence of a shock front. The Mach number based on the
temperature drop is estimated to be 1.3. We also successfully
determined the abundance profile up to 15' (1.3 Mpc), showing an almost
constant value (=0.3 solar) at the cluster outskirt. We estimated the
Compton -parameter to be 14.5, which is in
agreement with 's results (14-17 on the filament). The
line of sight depth of the filament is 1.1 Mpc, indicating that the
geometry of filament is likely a pancake shape rather than cylindrical. The
total mass of the filamentary structure is 7.7. We discuss a possible interpretation of the drop of X-ray emission
at the rim of the filament, which was pushed out by the merging activity and
formed by the accretion flow induced by the gravitational force of the
filament.Comment: 8 pages, 8 figures, accepted for publication in A&
A Water Tank Cerenkov Detector for Very High Energy Astroparticles
Extensive airshower detection is an important issue in current astrophysics
endeavours. Surface arrays detectors are a common practice since they are easy
to handle and have a 100% duty cycle. In this work we present an experimental
study of the parameters relevant to the design of a water Cerenkov detector for
high energy airshowers. This detector is conceived as part of the surface array
of the Pierre Auger Project, which is expected to be sensitive to ultra high
energy cosmic rays. In this paper we focus our attention in the geometry of the
tank and its inner liner material, discussing pulse shapes and charge
collections.Comment: Accepted in Nucl. Instr. and Meth. A, LaTex 18 pages, 7 figure
- …
