15,164 research outputs found

    Massive Spin-2 fields of Geometric Origin in Curved Spacetimes

    Full text link
    We study the consistency of a model which includes torsion as well as the metric as dynamical fields and has massive spin-2 particle in its spectrum. The massive spin-2 mode resides in the torsion, rather than in the metric. It is known that this model is tachyon- and ghost-free in Minkowski background. We show that this property remains valid and no other pathologies emerge in de Sitter and anti-de Sitter backgrounds, with some of our results extending to arbirary Einstein space backgrounds. This suggests that the model is consistent, at least at the classical level, unlike, e.g., the Fierz--Pauli theory.Comment: 17 pages, Clarifying remarks added in section 5, minor changes, version to be published in the Phys. Rev.

    Energy-momentum and angular momentum densities in gauge theories of gravity

    Get PDF
    In the \bar{\mbox{\rm Poincar\'{e}}} gauge theory of gravity, which has been formulated on the basis of a principal fiber bundle over the space-time manifold having the covering group of the proper orthochronous Poincar\'{e} group as the structure group, we examine the tensorial properties of the dynamical energy-momentum density GTkμ{}^{G}{\mathbf T}_{k}{}^{\mu} and the ` ` spin" angular momentum density GSklμ{}^{G}{\mathbf S}_{kl}{}^{\mu} of the gravitational field. They are both space-time vector densities, and transform as tensors under {\em global} SL(2,C)SL(2,C)- transformations. Under {\em local} internal translation, GTkμ{}^{G}{\mathbf T}_{k}{}^{\mu} is invariant, while GSklμ{}^{G}{\mathbf S}_{kl}{}^{\mu} transforms inhomogeneously. The dynamical energy-momentum density MTkμ{}^{M}{\mathbf T}_{k}{}^{\mu} and the ` ` spin" angular momentum density MSklμ{}^{M}{\mathbf S}_{kl}{}^{\mu} of the matter field are also examined, and they are known to be space-time vector densities and to obey tensorial transformation rules under internal \bar{\mbox{\rm Poincar\'{e}}} gauge transformations. The corresponding discussions in extended new general relativity which is obtained as a teleparallel limit of \bar{\mbox{\rm Poincar\'{e}}} gauge theory are also given, and energy-momentum and ` ` spin" angular momentum densities are known to be well behaved. Namely, they are all space-time vector densities, etc. In both theories, integrations of these densities on a space-like surface give the total energy-momentum and {\em total} (={\em spin}+{\em orbital}) angular momentum for asymptotically flat space-time. The tensorial properties of canonical energy-momentum and ` ` extended orbital angular momentum" densities are also examined.Comment: 18 page

    Back-in-time dynamics of the cluster IE 0657-56 (the Bullet System)

    Full text link
    We present a simplified dynamical model of the ``Bullet'' system of two colliding clusters. The model constrains the masses of the system by requiring that the orbits of the main and sub components satisfy the cosmological initial conditions of vanishing physical separation a Hubble time ago. This is also known as the timing argument. The model considers a system embedded in an over-dense region. We argue that a relative speed of 4500km/s4500 \rm km/s between the two components is consistent with cosmological conditions if the system is of a total mass of 2.8×1015h1M2.8\times 10^{15}h^{-1} M_\odot is embedded in a region of a (mild) over-density of 10 times the cosmological background density. Combining this with the lensing measurements of the projected mass, the model yields a ratio of 3:1 for the mass of the main relative to that of the subcomponent. The effect of the background weakens as the relative speed between the two components is decreased. For relative speeds lower than 3700km/s\sim 3700\rm km/s, the timing argument yields masses which are too low to be consistent with lensing.Comment: 5 pages, 3 figures, submitted to MNRA

    Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation

    Full text link
    In a unified viewpoint in quantum channel estimation, we compare the Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the group covariant model. For this purpose, we introduce the local asymptotic mini-max bound, whose maximum is shown to be equal to the asymptotic limit of the mini-max bound. It is shown that the local asymptotic mini-max bound is strictly larger than the Cramer-Rao bound in the phase estimation case while the both bounds coincide when the minimum mean square error decreases with the order O(1/n). We also derive a sufficient condition for that the minimum mean square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie

    Plane torsion waves in quadratic gravitational theories

    Get PDF
    The definition of the Riemann-Cartan space of the plane wave type is given. The condition under which the torsion plane waves exist is found. It is expressed in the form of the restriction imposed on the coupling constants of the 10-parametric quadratic gravitational Lagrangian. In the mathematical appendix the formula for commutator of the variation operator and Hodge operator is proved. This formula is applied for the variational procedure when the gravitational field equations are obtained in terms of the exterior differential forms.Comment: 3 May 1998. - 11

    Dirac spinor fields in the teleparallel gravity: comment on "Metric-affine approach to teleparallel gravity"

    Full text link
    We show that the coupling of a Dirac spinor field with the gravitational field in the teleparallel equivalent of general relativity is consistent. For an arbitrary SO(3,1) connection there are two possibilities for the coupling of the spinor field with the gravitational field. The problems of consistency raised by Y. N. Obukhov and J. G. Pereira in the paper {\it Metric-affine approach to teleparallel gravity} [gr-qc/0212080] take place only in the framework of one particular coupling. By adopting an alternative coupling the consistency problem disappears.Comment: 8 pages, Latex file, no figures, to appear in the Phys. Rev. D as a Commen

    Error Exponent in Asymmetric Quantum Hypothesis Testing and Its Application to Classical-Quantum Channel coding

    Get PDF
    In the simple quantum hypothesis testing problem, upper bound with asymmetric setting is shown by using a quite useful inequality by Audenaert et al, quant-ph/0610027, which was originally invented for symmetric setting. Using this upper bound, we obtain the Hoeffding bound, which are identical with the classical counter part if the hypotheses, composed of two density operators, are mutually commutative. Our upper bound improves the bound by Ogawa-Hayashi, and also provides a simpler proof of the direct part of the quantum Stein's lemma. Further, using this bound, we obtain a better exponential upper bound of the average error probability of classical-quantum channel coding

    Structure formation on the brane: A mimicry

    Full text link
    We show how braneworld cosmology with bulk matter can explain structure formation. In this scenario, the nonlocal corrections to the Friedmann equations supply a Weyl fluid that can dominate over matter at late times due to the energy exchange between the brane and the bulk. We demonstrate that the presence of the Weyl fluid radically changes the perturbation equations, which can take care of the fluctuations required to account for the large amount of inhomogeneities observed in the local universe. Further, we show how this Weyl fluid can mimic dark matter. We also investigate the bulk geometry responsible for the scenario.Comment: 7 pages. Matches published versio

    Charge transfer and weak bonding between molecular oxygen and graphene zigzag edges at low temperatures

    Full text link
    Electron paramagnetic resonance (EPR) study of air-physisorbed defective carbon nano-onions evidences in favor of microwave assisted formation of weakly-bound paramagnetic complexes comprising negatively-charged O2- ions and edge carbon atoms carrying pi-electronic spins. These complexes being located on the graphene edges are stable at low temperatures but irreversibly dissociate at temperatures above 50-60 K. These EPR findings are justified by density functional theory (DFT) calculations demonstrating transfer of an electron from the zigzag edge of graphene-like material to oxygen molecule physisorbed on the graphene sheet edge. This charge transfer causes changing the spin state of the adsorbed oxygen molecule from S = 1 to S = 1/2 one. DFT calculations show significant changes of adsorption energy of oxygen molecule and robustness of the charge transfer to variations of the graphene-like substrate morphology (flat and corrugated mono- and bi-layered graphene) as well as edges passivation. The presence of H- and COOH- terminated edge carbon sites with such corrugated substrate morphology allows formation of ZE-O2- paramagnetic complexes characterized by small (<50 meV) binding energies and also explains their irreversible dissociation as revealed by EPR.Comment: 28 pages, 8 figures, 2 tables, accepted in Carbon journa

    Poincar\'{e} gauge theory of gravity

    Full text link
    A Poincar\'{e} gauge theory of (2+1)-dimensional gravity is developed. Fundamental gravitational field variables are dreibein fields and Lorentz gauge potentials, and the theory is underlain with the Riemann-Cartan space-time. The most general gravitational Lagrangian density, which is at most quadratic in curvature and torsion tensors and invariant under local Lorentz transformations and under general coordinate transformations, is given. Gravitational field equations are studied in detail, and solutions of the equations for weak gravitational fields are examined for the case with a static, \lq \lq spin"less point like source. We find, among other things, the following: (1)Solutions of the vacuum Einstein equation satisfy gravitational field equations in the vacuum in this theory. (2)For a class of the parameters in the gravitational Lagrangian density, the torsion is \lq \lq frozen" at the place where \lq \lq spin" density of the source field is not vanishing. In this case, the field equation actually agrees with the Einstein equation, when the source field is \lq \lq spin"less. (3)A teleparallel theory developed in a previous paper is \lq \lq included as a solution" in a limiting case. (4)A Newtonian limit is obtainable, if the parameters in the Lagrangian density satisfy certain conditions.Comment: 27pages, RevTeX, OCU-PHYS-15
    corecore