15,164 research outputs found
Massive Spin-2 fields of Geometric Origin in Curved Spacetimes
We study the consistency of a model which includes torsion as well as the
metric as dynamical fields and has massive spin-2 particle in its spectrum. The
massive spin-2 mode resides in the torsion, rather than in the metric. It is
known that this model is tachyon- and ghost-free in Minkowski background. We
show that this property remains valid and no other pathologies emerge in de
Sitter and anti-de Sitter backgrounds, with some of our results extending to
arbirary Einstein space backgrounds. This suggests that the model is
consistent, at least at the classical level, unlike, e.g., the Fierz--Pauli
theory.Comment: 17 pages, Clarifying remarks added in section 5, minor changes,
version to be published in the Phys. Rev.
Energy-momentum and angular momentum densities in gauge theories of gravity
In the \bar{\mbox{\rm Poincar\'{e}}} gauge theory of gravity, which has
been formulated on the basis of a principal fiber bundle over the space-time
manifold having the covering group of the proper orthochronous Poincar\'{e}
group as the structure group, we examine the tensorial properties of the
dynamical energy-momentum density and the ` `
spin" angular momentum density of the
gravitational field. They are both space-time vector densities, and transform
as tensors under {\em global} - transformations. Under {\em local}
internal translation, is invariant, while
transforms inhomogeneously. The dynamical
energy-momentum density and the ` ` spin"
angular momentum density of the matter field
are also examined, and they are known to be space-time vector densities and to
obey tensorial transformation rules under internal \bar{\mbox{\rm
Poincar\'{e}}} gauge transformations. The corresponding discussions in
extended new general relativity which is obtained as a teleparallel limit of
\bar{\mbox{\rm Poincar\'{e}}} gauge theory are also given, and
energy-momentum and ` ` spin" angular momentum densities are known to be well
behaved. Namely, they are all space-time vector densities, etc. In both
theories, integrations of these densities on a space-like surface give the
total energy-momentum and {\em total} (={\em spin}+{\em orbital}) angular
momentum for asymptotically flat space-time. The tensorial properties of
canonical energy-momentum and ` ` extended orbital angular momentum" densities
are also examined.Comment: 18 page
Back-in-time dynamics of the cluster IE 0657-56 (the Bullet System)
We present a simplified dynamical model of the ``Bullet'' system of two
colliding clusters. The model constrains the masses of the system by requiring
that the orbits of the main and sub components satisfy the cosmological initial
conditions of vanishing physical separation a Hubble time ago. This is also
known as the timing argument. The model considers a system embedded in an
over-dense region. We argue that a relative speed of between
the two components is consistent with cosmological conditions if the system is
of a total mass of is embedded in a region of
a (mild) over-density of 10 times the cosmological background density.
Combining this with the lensing measurements of the projected mass, the model
yields a ratio of 3:1 for the mass of the main relative to that of the
subcomponent. The effect of the background weakens as the relative speed
between the two components is decreased. For relative speeds lower than , the timing argument yields masses which are too low to be
consistent with lensing.Comment: 5 pages, 3 figures, submitted to MNRA
Comparison between the Cramer-Rao and the mini-max approaches in quantum channel estimation
In a unified viewpoint in quantum channel estimation, we compare the
Cramer-Rao and the mini-max approaches, which gives the Bayesian bound in the
group covariant model. For this purpose, we introduce the local asymptotic
mini-max bound, whose maximum is shown to be equal to the asymptotic limit of
the mini-max bound. It is shown that the local asymptotic mini-max bound is
strictly larger than the Cramer-Rao bound in the phase estimation case while
the both bounds coincide when the minimum mean square error decreases with the
order O(1/n). We also derive a sufficient condition for that the minimum mean
square error decreases with the order O(1/n).Comment: In this revision, some unlcear parts are clarifie
Plane torsion waves in quadratic gravitational theories
The definition of the Riemann-Cartan space of the plane wave type is given.
The condition under which the torsion plane waves exist is found. It is
expressed in the form of the restriction imposed on the coupling constants of
the 10-parametric quadratic gravitational Lagrangian. In the mathematical
appendix the formula for commutator of the variation operator and Hodge
operator is proved. This formula is applied for the variational procedure when
the gravitational field equations are obtained in terms of the exterior
differential forms.Comment: 3 May 1998. - 11
Dirac spinor fields in the teleparallel gravity: comment on "Metric-affine approach to teleparallel gravity"
We show that the coupling of a Dirac spinor field with the gravitational
field in the teleparallel equivalent of general relativity is consistent. For
an arbitrary SO(3,1) connection there are two possibilities for the coupling of
the spinor field with the gravitational field. The problems of consistency
raised by Y. N. Obukhov and J. G. Pereira in the paper {\it Metric-affine
approach to teleparallel gravity} [gr-qc/0212080] take place only in the
framework of one particular coupling. By adopting an alternative coupling the
consistency problem disappears.Comment: 8 pages, Latex file, no figures, to appear in the Phys. Rev. D as a
Commen
Error Exponent in Asymmetric Quantum Hypothesis Testing and Its Application to Classical-Quantum Channel coding
In the simple quantum hypothesis testing problem, upper bound with asymmetric
setting is shown by using a quite useful inequality by Audenaert et al,
quant-ph/0610027, which was originally invented for symmetric setting. Using
this upper bound, we obtain the Hoeffding bound, which are identical with the
classical counter part if the hypotheses, composed of two density operators,
are mutually commutative. Our upper bound improves the bound by Ogawa-Hayashi,
and also provides a simpler proof of the direct part of the quantum Stein's
lemma. Further, using this bound, we obtain a better exponential upper bound of
the average error probability of classical-quantum channel coding
Structure formation on the brane: A mimicry
We show how braneworld cosmology with bulk matter can explain structure
formation. In this scenario, the nonlocal corrections to the Friedmann
equations supply a Weyl fluid that can dominate over matter at late times due
to the energy exchange between the brane and the bulk. We demonstrate that the
presence of the Weyl fluid radically changes the perturbation equations, which
can take care of the fluctuations required to account for the large amount of
inhomogeneities observed in the local universe. Further, we show how this Weyl
fluid can mimic dark matter. We also investigate the bulk geometry responsible
for the scenario.Comment: 7 pages. Matches published versio
Charge transfer and weak bonding between molecular oxygen and graphene zigzag edges at low temperatures
Electron paramagnetic resonance (EPR) study of air-physisorbed defective
carbon nano-onions evidences in favor of microwave assisted formation of
weakly-bound paramagnetic complexes comprising negatively-charged O2- ions and
edge carbon atoms carrying pi-electronic spins. These complexes being located
on the graphene edges are stable at low temperatures but irreversibly
dissociate at temperatures above 50-60 K. These EPR findings are justified by
density functional theory (DFT) calculations demonstrating transfer of an
electron from the zigzag edge of graphene-like material to oxygen molecule
physisorbed on the graphene sheet edge. This charge transfer causes changing
the spin state of the adsorbed oxygen molecule from S = 1 to S = 1/2 one. DFT
calculations show significant changes of adsorption energy of oxygen molecule
and robustness of the charge transfer to variations of the graphene-like
substrate morphology (flat and corrugated mono- and bi-layered graphene) as
well as edges passivation. The presence of H- and COOH- terminated edge carbon
sites with such corrugated substrate morphology allows formation of ZE-O2-
paramagnetic complexes characterized by small (<50 meV) binding energies and
also explains their irreversible dissociation as revealed by EPR.Comment: 28 pages, 8 figures, 2 tables, accepted in Carbon journa
Poincar\'{e} gauge theory of gravity
A Poincar\'{e} gauge theory of (2+1)-dimensional gravity is developed.
Fundamental gravitational field variables are dreibein fields and Lorentz gauge
potentials, and the theory is underlain with the Riemann-Cartan space-time. The
most general gravitational Lagrangian density, which is at most quadratic in
curvature and torsion tensors and invariant under local Lorentz transformations
and under general coordinate transformations, is given. Gravitational field
equations are studied in detail, and solutions of the equations for weak
gravitational fields are examined for the case with a static, \lq \lq spin"less
point like source. We find, among other things, the following: (1)Solutions of
the vacuum Einstein equation satisfy gravitational field equations in the
vacuum in this theory. (2)For a class of the parameters in the gravitational
Lagrangian density, the torsion is \lq \lq frozen" at the place where \lq \lq
spin" density of the source field is not vanishing. In this case, the field
equation actually agrees with the Einstein equation, when the source field is
\lq \lq spin"less. (3)A teleparallel theory developed in a previous paper is
\lq \lq included as a solution" in a limiting case. (4)A Newtonian limit is
obtainable, if the parameters in the Lagrangian density satisfy certain
conditions.Comment: 27pages, RevTeX, OCU-PHYS-15
- …