25,686 research outputs found
Recommended from our members
Millimetre and submillimetre molecular line observations of the reflection nebula NGC 2023
Observations in the CO J = 2 - 1, CO J = 3 - 2 and HCO+ J = 4 - 3 transitions of the molecular cloud associated with NGC 2023 are presented. The observations reveal the complex structure of the gas in the surrounding cloud, and show the presence of several hot-spots which may represent separate bodies of gas. A search has been made for the source of excitation of two nearby groups of Herbig-Haro objects recently discovered by Malin et al. (1987). No such objects can be clearly identified from the data. CO J = 3 - 2 spectra taken at positions lying on the CO J = 1 - 0 shell observed by Gatley et al. (1987) show marked enhancements in peak line strength relative to coincident CO J = 2 - 1 data. By contrast, no such enhancements are observed away from the shell. Observations of the submillimeter wavelength HCO+ J = 4 - 3 transition show that the line strength is greatest in the vicinity of the shell structure. Simple large velocity gradient modeling of the excitation conditions of the shell material suggests that the gas may be hot (Tkin ~ 140 K), dense, and optically thin
The law of action and reaction for the effective force in a nonequilibrium colloidal system
We study a nonequilibrium Langevin many-body system containing two 'test'
particles and many 'background' particles. The test particles are spatially
confined by a harmonic potential, and the background particles are driven by an
external driving force. Employing numerical simulations of the model, we
formulate an effective description of the two test particles in a
nonequilibrium steady state. In particular, we investigate several different
definitions of the effective force acting between the test particles. We find
that the law of action and reaction does not hold for the total mechanical
force exerted by the background particles, but that it does hold for the
thermodynamic force defined operationally on the basis of an idea used to
extend the first law of thermodynamics to nonequilibrium steady states.Comment: 13 page
Single-molecule stochastic resonance
Stochastic resonance (SR) is a well known phenomenon in dynamical systems. It
consists of the amplification and optimization of the response of a system
assisted by stochastic noise. Here we carry out the first experimental study of
SR in single DNA hairpins which exhibit cooperatively folding/unfolding
transitions under the action of an applied oscillating mechanical force with
optical tweezers. By varying the frequency of the force oscillation, we
investigated the folding/unfolding kinetics of DNA hairpins in a periodically
driven bistable free-energy potential. We measured several SR quantifiers under
varied conditions of the experimental setup such as trap stiffness and length
of the molecular handles used for single-molecule manipulation. We find that
the signal-to-noise ratio (SNR) of the spectral density of measured
fluctuations in molecular extension of the DNA hairpins is a good quantifier of
the SR. The frequency dependence of the SNR exhibits a peak at a frequency
value given by the resonance matching condition. Finally, we carried out
experiments in short hairpins that show how SR might be useful to enhance the
detection of conformational molecular transitions of low SNR.Comment: 11 pages, 7 figures, supplementary material
(http://prx.aps.org/epaps/PRX/v2/i3/e031012/prx-supp.pdf
Ising pyrochlore magnets: Low temperature properties, ice rules and beyond
Pyrochlore magnets are candidates for spin-ice behavior. We present
theoretical simulations of relevance for the pyrochlore family R2Ti2O7 (R= rare
earth) supported by magnetothermal measurements on selected systems. By
considering long ranged dipole-dipole as well as short-ranged superexchange
interactions we get three distinct behaviours: (i) an ordered doubly degenerate
state, (ii) a highly disordered state with a broad transition to paramagnetism,
(iii) a partially ordered state with a sharp transition to paramagnetism. Thus
these competing interactions can induce behaviour very different from
conventional ``spin ice''. Closely corresponding behaviour is seen in the real
compounds---in particular Ho2Ti2O7 corresponds to case (iii) which has not been
discussed before, rather than (ii) as suggested earlier.Comment: 5 pages revtex, 4 figures; some revisions, additional data,
additional co-authors and a changed title. Basic ideas of paper remain the
same but those who downloaded the original version are requested to get this
more complete versio
Global information balance in quantum measurements
We perform an information-theoretical analysis of quantum measurement
processes and obtain the global information balance in quantum measurements, in
the form of a closed chain equation for quantum mutual entropies. Our balance
provides a tight and general entropic information-disturbance trade-off, and
explains the physical mechanism underlying it. Finally, the single-outcome
case, that is, the case of measurements with post-selection, is briefly
discussed.Comment: Final version to appear on Physical Review Letter
Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies
A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults
Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation
We discuss two quantum analogues of Fisher information, symmetric logarithmic
derivative (SLD) Fisher information and Kubo-Mori-Bogoljubov (KMB) Fisher
information from a large deviation viewpoint of quantum estimation and prove
that the former gives the true bound and the latter gives the bound of
consistent superefficient estimators. In another comparison, it is shown that
the difference between them is characterized by the change of the order of
limits.Comment: LaTeX with iopart.cls, iopart12.clo, iopams.st
Hydrogen Atom in Relativistic Motion
The Lorentz contraction of bound states in field theory is often appealed to
in qualitative descriptions of high energy particle collisions. Surprisingly,
the contraction has not been demonstrated explicitly even in simple cases such
as the hydrogen atom. It requires a calculation of wave functions evaluated at
equal (ordinary) time for bound states in motion. Such wave functions are not
obtained by kinematic boosts from the rest frame. Starting from the exact
Bethe-Salpeter equation we derive the equal-time wave function of a
fermion-antifermion bound state in QED, i.e., positronium or the hydrogen atom,
in any frame to leading order in alpha. We show explicitly that the bound state
energy transforms as the fourth component of a vector and that the wave
function of the fermion-antifermion Fock state contracts as expected.
Transverse photon exchange contributes at leading order to the binding energy
of the bound state in motion. We study the general features of the
corresponding fermion-antifermion-photon Fock states, and show that they do not
transform by simply contracting. We verify that the wave function reduces to
the light-front one in the infinite momentum frame.Comment: 20 pages, 10 figures; v2: some changes in discussion, accepted for
publication in Phys.Rev.
U(n) Spectral Covers from Decomposition
We construct decomposed spectral covers for bundles on elliptically fibered
Calabi-Yau threefolds whose structure groups are S(U(1) x U(4)), S(U(2) x U(3))
and S(U(1) x U(1) x U(3)) in heterotic string compactifications. The
decomposition requires not only the tuning of the SU(5) spectral covers but
also the tuning of the complex structure moduli of the Calabi-Yau threefolds.
This configuration is translated to geometric data on F-theory side. We find
that the monodromy locus for two-cycles in K3 fibered Calabi-Yau fourfolds in a
stable degeneration limit is globally factorized with squared factors under the
decomposition conditions. This signals that the monodromy group is reduced and
there is a U(1) symmetry in a low energy effective field theory. To support
that, we explicitly check the reduction of a monodromy group in an appreciable
region of the moduli space for an gauge theory with (1+2) decomposition.
This may provide a systematic way for constructing F-theory models with U(1)
symmetries.Comment: 41 pages, 14 figures; v2: minor improvements and a reference adde
- …