13 research outputs found

    An Assessment of aluminum contamination in neonatal parenteral nutrition solutions based on measured versus labeled content

    No full text
    Aluminum can potentially cause toxicity in pediatrics and neonates receiving parenteral nutrition. Some PN solutions and ingredients in Saudi Arabia do not comply with US FDA regulations regarding aluminum exposure. This study aims to determine the aluminum concentration in samples of PN solutions and ingredients used to feed infants in Saudi Arabia. The aluminum in the samples was determined using inductively coupled plasma mass spectrometry. The concentration of metal contaminants in each sample was determined in triplicate. The aluminum content of 38 samples was investigated, 15 of which originated from components included in the prepared PN solutions. Among the 15 samples, the least measurable aluminum content was detected in potassium chloride solutions (0.81 mcg/L). In contrast, the greatest amount of aluminum was detected in potassium phosphate and calcium gluconate (141,64 mcg/L and 462.7 mcg/L), respectively. The results showed that the final PN solution (PNS) product contained more aluminum levels than the content ingredients; in addition, the study found a statistically significant relationship among 18 pediatric patients at KFMC who had intestinal failure and needed long-term parenteral nutrition. Specifically, their high aluminum levels, exceeding the normal range of 0.6 ng/ml, indicate that the current use of PN solutions will likely cause toxicity due to aluminum contamination in additives. Hence, reducing aluminum in PN solutions is imperative to ensure patient safety

    Crystal structure of N′-[(1E)-(2,6-dichlorophenyl)-methylidene]adamantane-1-carbohydrazide, C18H20Cl2N2O

    No full text
    C18H20Cl2N2O, orthorhombic, Pbca (No. 61), a = 8.1023(2) Å, b = 18.7063(4) Å, c = 22.5509(6) Å, V = 3417.91(14) Å3, Z = 8, Rgt(F) = 0.0496, wRref(F2) = 0.1535, T = 293(2).The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the Research Group Project No. PRG-1436–23. We also acknowledge the financialsupport from Spanish Ministerio de Economía y Competitividad (MINECO-13-MAT2013–40950-R, FPI grant BES-2011–046948 to MSM-A).Peer Reviewe

    Physical and chemical screening of honey samples available in the Saudi market: An important aspect in the authentication process and quality assessment

    No full text
    Honey is becoming accepted as a reputable and effective therapeutic agent by practitioners of conventional medicine and by the general public. It has many biological activities and has been effectively used in the treatment of many diseases, e.g. gastrointestinal diseases, skin diseases, cancer, heart diseases, and neurological degeneration. Honey is an excellent source of energy containing mainly carbohydrates and water, as well as, small amounts of organic acids, vitamins, minerals, flavonoids, and enzymes. As a natural product with a relatively high price, honey has been for a long time a target for adulteration. The authenticity of honey is of great importance from commercial and health aspects. The study of the physical and chemical properties of honey has been increasingly applied as a certification process for the purpose of qualification of honey samples. The current work focusses on studying the authenticity of various types of honey sold in Riyadh market (24 samples). For this purpose, physical properties (pH, hydroxylmethylfurfural HMF, and pollen test) were measured. Besides, sugar composition was evaluated using Fehling test and an HPLC method. Elemental analysis was carried out using inductively coupled plasma (ICP). In addition, the presence of drug additives was assessed by means of GC–MS. The obtained results were compared with the Saudi Arabian standards, Codex Alimentarius Commission (2001), and harmonized methods of the international honey commission. Keywords: Honey, Adulteration, HPLC, GC–MS, ICP, Saudi marke

    Development and Validation of 96-Microwell-Based Spectrophotometric and High-Performance Liquid Chromatography with Fluorescence Detection Methods with High Throughput for Quantitation of Duvelisib and Seliciclib in Their Bulk Forms and Capsules

    No full text
    The Food and Drug Administration (FDA) has approved duvelisib (DUV) for managing follicular lymphoma, small lymphocytic lymphoma, and relapsed or refractory chronic lymphocytic leukemia. Seliciclib (SEL) is a candidate drug for these cancers, neurodegenerative disorders, renal diseases, several viral infections, and chronic inflammation disorders. This work describes the development and validation of a 96-microwell-based spectrophotometric method (MW-SPM) and a high-performance liquid chromatography with fluorescence detection method (HPLC-FD) for the quantitation of DUV and SEL in their bulk forms and capsules. The MW-SPM is based on the formation of colored charge transfer complexes (CTCs) as products for the reactions of DUV and SEL, as n-electron donors, with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), as a π-electron acceptor. The absorption intensity of the CTCs was measured by using an absorbance plate reader at 450 nm. The stoichiometric ratios of DUV:DDQ and SEL:DDQ were 1:1 and 1:2, respectively, and accordingly the reaction mechanisms were postulated. The HPLC-FD involved the chromatographic separation of DUV and SEL on a Hypersil™ Phenyl HPLC column (250 mm length × 4.6 mm i.d., 5 μm particle diameter) with a mobile phase composed of acetonitrile:acetate buffer, pH 4.5 (35:65, v/v) at a flow rate of 2.2 mL/min. DUV and SEL were detected at 370 nm after excitation at 280 nm. SEL was used as an internal standard (IS) for quantitation of DUV, and DUV was used as an IS for quantitation of SEL. Both MW-SPM and HPLC-FD were validated according to the guidelines of the International Council for Harmonization (ICH) for validation of analytical procedures. The linear ranges for both DUV and SEL were 14.52–200 µg/well (100 µL) and 0.12–3.2 µg/mL for MW-SPM and HPLC-FD, respectively. LOD values in MW-SPM for DUV and SEL were 4.4 and 3.17 µg/well, respectively; however, those for HPLC-FD were 0.03 and 0.05 µg/mL, respectively. The accuracy and precision of both methods were confirmed as the recovery values were ≥98.5% and the values of relative standard deviations (RSD) were ≤2.41%. Both methods were satisfactorily applied to the quantitation of DUV and SEL in their capsules; the mean recovery values were ≥99.2%. Both methods have simple procedures and high analytical throughput. Moreover, they consume a small volume of organic solvent; thus, they are economic and eco-friendly. Accordingly, the methods are valuable for routine use in quality control (QC) laboratories for quantitation of DUV and SEL in their bulk forms and capsules

    Development and Validation of 96-Microwell-Based Spectrophotometric and High-Performance Liquid Chromatography with Fluorescence Detection Methods with High Throughput for Quantitation of Duvelisib and Seliciclib in Their Bulk Forms and Capsules

    No full text
    The Food and Drug Administration (FDA) has approved duvelisib (DUV) for managing follicular lymphoma, small lymphocytic lymphoma, and relapsed or refractory chronic lymphocytic leukemia. Seliciclib (SEL) is a candidate drug for these cancers, neurodegenerative disorders, renal diseases, several viral infections, and chronic inflammation disorders. This work describes the development and validation of a 96-microwell-based spectrophotometric method (MW-SPM) and a high-performance liquid chromatography with fluorescence detection method (HPLC-FD) for the quantitation of DUV and SEL in their bulk forms and capsules. The MW-SPM is based on the formation of colored charge transfer complexes (CTCs) as products for the reactions of DUV and SEL, as n-electron donors, with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), as a π-electron acceptor. The absorption intensity of the CTCs was measured by using an absorbance plate reader at 450 nm. The stoichiometric ratios of DUV:DDQ and SEL:DDQ were 1:1 and 1:2, respectively, and accordingly the reaction mechanisms were postulated. The HPLC-FD involved the chromatographic separation of DUV and SEL on a Hypersil™ Phenyl HPLC column (250 mm length × 4.6 mm i.d., 5 μm particle diameter) with a mobile phase composed of acetonitrile:acetate buffer, pH 4.5 (35:65, v/v) at a flow rate of 2.2 mL/min. DUV and SEL were detected at 370 nm after excitation at 280 nm. SEL was used as an internal standard (IS) for quantitation of DUV, and DUV was used as an IS for quantitation of SEL. Both MW-SPM and HPLC-FD were validated according to the guidelines of the International Council for Harmonization (ICH) for validation of analytical procedures. The linear ranges for both DUV and SEL were 14.52–200 µg/well (100 µL) and 0.12–3.2 µg/mL for MW-SPM and HPLC-FD, respectively. LOD values in MW-SPM for DUV and SEL were 4.4 and 3.17 µg/well, respectively; however, those for HPLC-FD were 0.03 and 0.05 µg/mL, respectively. The accuracy and precision of both methods were confirmed as the recovery values were ≥98.5% and the values of relative standard deviations (RSD) were ≤2.41%. Both methods were satisfactorily applied to the quantitation of DUV and SEL in their capsules; the mean recovery values were ≥99.2%. Both methods have simple procedures and high analytical throughput. Moreover, they consume a small volume of organic solvent; thus, they are economic and eco-friendly. Accordingly, the methods are valuable for routine use in quality control (QC) laboratories for quantitation of DUV and SEL in their bulk forms and capsules

    Aspartames Alter Pharmacokinetics Parameters of Erlotinib and Gefitinib and Elevate Liver Enzymes in Wistar Rats

    No full text
    Background: Erlotinib (ERL) and gefitinib (GEF) are extensively metabolized by CYP450 enzymes. Aspartame (ASP), an artificial sweetener, induces CYP2E1 and CYP3A2 enzymes in the brain and could increase liver enzymes. In this work, the influence of ASP on the pharmacokinetics (PK) of ERL and GEF in Wistar rats was evaluated. Methods: The PKs of ERL and GEF were evaluated after receiving 175 mg/kg or 1000 mg/kg of ASP for four weeks using UPLC-MS/MS. Levels of liver enzymes after four weeks of ASP consumption were also evaluated. Results: ASP 175 mg/kg was able to significantly alter levels of Cmax (36% increase for ERL, 38% decrease for GEF), AUC0–72 (205% increase for ERL, 41% increase for GEF), and AUC0–∞ (112% increase for ERL, 14% increase for GEF). Moreover, ASP 175 mg/kg decreased the apparent oral clearance ERL and GEF by 58% and 13%, respectively. ASP 1000 mg/kg increased Cmax of ERL by 159% and decreased GEF’s Cmax by and 73%. Both AUC0–72 and AUC0–∞ were increased by ASP 1000 for ERL and decreased for GEF. CL/F decreased by 64% for ERL and increased by 38.8% for GEF. Moreover, data indicated that ASP significantly increased levels of liver enzymes within two weeks of administration. Conclusions: Although ASP 175 and 1000 mg/kg alter ERL and GEF PKs parameters, ASP 1000 mg/kg has the highest impact on most parameters. ASP 1000 mg/kg also can significantly increase activities of liver enzymes indicating the possibility of inducing liver injury. Therefore, it might be of clinical importance to avoid the administration of aspartame containing products while on ERL or GEF therapy

    Quinine Charge Transfer Complexes with 2,3-Dichloro-5,6-Dicyano-Benzoquinone and 7,7,8,8-Tetracyanoquinodimethane: Spectroscopic Characterization and Theoretical Study

    No full text
    The molecular charge transfer reactions of quinine (Q) with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as a π-acceptor to form charge transfer (CT) complexes have been studied. The CT complexes were characterized by infrared spectra, NMR, mass spectrometry, conductometry and spectrometry. The Q-DDQ and Q-TCNQ charge transfer complexes were monitored at 480 and 843 nm, respectively. The results confirm the formation of CT complexes. The molar ratio of Q:DDQ and Q: TCNQ assessed using Job’s method was 1:1, which agrees with the results obtained by the Benesi-Hildebrand equation. The stability of the formed CT complexes was assessed by measuring different spectroscopic parameters such as oscillator strength, transition dipole moment, ionization potential, the energy of CT complex, resonance energy, dissociation energy and standard free energy change. The DFT geometry optimization of quinine, DDQ and TCNQ, its charge transfer complex, and UV theoretical vs. experimental comparative study were carried out. The theoretical and experimental results agreed. DFT/B3LYP/6-311++G(d,p) level of theory was used for the investigation of charge transfer between quinine as electron donor and (DDQ and TNCQ) as electron acceptors. The geometric structures, orbital energies, HOMO, LUMO and energy gaps were determined. The transition energies of the charge transfer complexes were computed using the TD-DFT/B3LYP/6-311++G(d,p) level of theory. The computed parameters were comparable to the experimental parameters, and the computational results aided in the analysis of the data

    Gut Microbiota Dynamics in Relation to Long-COVID-19 Syndrome: Role of Probiotics to Combat Psychiatric Complications

    No full text
    Increasing numbers of patients who recover from COVID-19 report lasting symptoms, such as fatigue, muscle weakness, dementia, and insomnia, known collectively as post-acute COVID syndrome or long COVID. These lasting symptoms have been examined in different studies and found to influence multiple organs, sometimes resulting in life-threating conditions. In this review, these symptoms are discussed in connection to the COVID-19 and long-COVID-19 immune changes, highlighting oral and psychiatric health, as this work focuses on the gut microbiota’s link to long-COVID-19 manifestations in the liver, heart, kidney, brain, and spleen. A model of this is presented to show the biological and clinical implications of gut microbiota in SARS-CoV-2 infection and how they could possibly affect the therapeutic aspects of the disease. Probiotics can support the body’s systems in fighting viral infections. This review focuses on current knowledge about the use of probiotics as adjuvant therapies for COVID-19 patients that might help to prevent long-COVID-19 complications

    4-[(4-acetylphenyl)amino]-2-methylidene-4-oxobutanoic acid, a newly synthesized amide with hydrophilic and hydrophobic segments: Spectroscopic characterization and investigation of its reactive properties

    No full text
    The FT-IR and FT-Raman spectra of 4-[(4-acetylphenyl)amino]-2- -methylidene-4-oxobutanoic acid were recorded. The vibrational wave numbers were computed by DFT quantum chemical calculations and the vibrational assignments were realized using the potential energy distribution. The theoretically predicted geometrical parameters were in agreement with the XRD data. Determination and visualization of molecule sites prone to electrophilic attacks were performed by mapping the average local ionization energies (ALIE) to the electron density surface. Furthermore, determination of possible reactive centres of title molecule was realized by calculation of the Fukui functions. Intramolecular non-covalent interactions were also determined and visualized. In addition, prediction of molecule sites possibly prone to autoxidation was performed by calculation of the bond dissociation energies (BDE), while the stability of the title molecule in water was assessed by calculation of radial distribution functions (RDF) obtained after molecular dynamics (MD) simulations. The docked title ligand compound forms a stable complex with insulin receptor kinase and gives a binding affinity of –10.2 kcal* mol-1
    corecore