325 research outputs found
Kinetic Heterogeneities at Dynamical Crossovers
We perform molecular dynamics simulations of a model glass-forming liquid to
measure the size of kinetic heterogeneities, using a dynamic susceptibility
that quantifies the number of particles whose dynamics
are correlated on the length scale and time scale . By measuring
as a function of both and , we locate local maxima
at distances and times . Near the dynamical
glass transition, we find two types of maxima, both correlated with crossovers
in the dynamical behavior: a smaller maximum corresponding to the crossover
from ballistic to sub-diffusive motion, and a larger maximum corresponding to
the crossover from sub-diffusive to diffusive motion. Our results indicate that
kinetic heterogeneities are not necessarily signatures of an impending glass or
jamming transition.Comment: 6 pages, 4 figure
Nuclear Spin-Isospin Correlations, Parity Violation, and the Problem
The strong interaction effects of isospin- and spin-dependent nucleon-nucleon
correlations observed in many-body calculations are interpreted in terms of a
one-pion exchange mechanism. Including such effects in computations of nuclear
parity violating effects leads to enhancements of about 10%. A larger effect
arises from the one-boson exchange nature of the parity non-conserving nucleon-
nucleon interaction, which depends on both weak and strong meson-nucleon
coupling constants. Using values of the latter that are constrained by
nucleon-nucleon phase shifts leads to enhancements of parity violation by
factors close to two. Thus much of previously noticed discrepancies between
weak coupling constants extracted from different experiments can be removed.Comment: 8 pages 2 figures there should have been two figures in v
Two neutrino double beta decay within the -approximation
We examine the contributions of odd-parity nuclear operators to the
two-neutrino double beta decay amplitude, which come from
the -wave Coulomb corrections to the electron wave functions and the recoil
corrections to the nuclear currents. Although they are formally of higher order
in or of the nucleon than the usual Fermi and Gamow-Teller
matrix elements, explicit calculations performed within the QRPA show that they
are significant when confronted with the experimental data.Comment: 9 pages, latex, no figure
Nuclear Anapole Moments
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the
electromagnetic current operator. Although the existence of this moment was
recognized theoretically soon after the discovery of parity nonconservation
(PNC), its experimental isolation was achieved only recently, when a new level
of precision was reached in a measurement of the hyperfine dependence of atomic
PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this
paper, we present the details of the first calculation of these anapole moments
in the framework commonly used in other studies of hadronic PNC, a meson
exchange potential that includes long-range pion exchange and enough degrees of
freedom to describe the five independent amplitudes induced by
short-range interactions. The resulting contributions of pi-, rho-, and
omega-exchange to the single-nucleon anapole moment, to parity admixtures in
the nuclear ground state, and to PNC exchange currents are evaluated, using
configuration-mixed shell-model wave functions. The experimental anapole moment
constraints on the PNC meson-nucleon coupling constants are derived and
compared with those from other tests of the hadronic weak interaction. While
the bounds obtained from the anapole moment results are consistent with the
broad ``reasonable ranges'' defined by theory, they are not in good agreement
with the constraints from the other experiments. We explore possible
explanations for the discrepancy and comment on the potential importance of new
experiments.Comment: 53 pages; 10 figures; revtex; submitted to Phys Rev
Constraints on Parity-Even Time Reversal Violation in the Nucleon-Nucleon System and Its Connection to Charge Symmetry Breaking
Parity-even time reversal violation (TRV) in the nucleon-nucleon interaction
is reconsidered. The TRV -exchange interaction on which recent analyses
of measurements are based is necessarily also charge-symmetry breaking (CSB).
Limits on its strength relative to regular -exchange are
extracted from recent CSB experiments in neutron-proton scattering. The result
(95% CL) is considerably lower than limits
inferred from direct TRV tests in nuclear processes. Properties of
-exchange and limit imposed by the neutron EDM are briefly discussed.Comment: RevTex, 8 pages. Factor ten error in cited neutron EDM corrected,
discussion and two references adde
Neutrinoless double beta decay within Self-consistent Renormalized Quasiparticle Random Phase Approximation and inclusion of induced nucleon currents
The first, to our knowledge, calculation of neutrinoless double beta decay
(-decay) matrix elements within the self-consistent
renormalised Quasiparticle Random Phase Approximation (SRQRPA) is presented.
The contribution from the momentum-dependent induced nucleon currents to
-decay amplitude is taken into account. A detailed nuclear
structure study includes the discussion of the sensitivity of the obtained
SRQRPA results for -decay of Ge to the parameters of
nuclear Hamiltonian, two-nucleon short-range correlations and the truncation of
the model space. A comparision with the standard and renormalized QRPA is
presented. We have found a considerable reduction of the SRQRPA nuclear matrix
elements, resulting in less stringent limits for the effective neutrino mass.Comment: 13 pages, 3 figures, 1 tabl
P,T-Violating Nuclear Matrix Elements in the One-Meson Exchange Approximation
Expressions for the P,T-violating NN potentials are derived for ,
and exchange. The nuclear matrix elements for and
exchange are shown to be greatly suppressed, so that, under the assumption of
comparable coupling constants, exchange would dominate by two orders of
magnitude. The ratio of P,T-violating to P-violating matrix elements is found
to remain approximately constant across the nuclear mass table, thus
establishing the proportionality between time-reversal-violation and
parity-violation matrix elements. The calculated values of this ratio suggest a
need to obtain an accuracy of order for the ratio of the
PT-violating to P-violating asymmetries in neutron transmission experiments in
order to improve on the present limits on the isovector pion coupling constant.Comment: 17 pages, LaTeX, no figure
Can a supernova be located by its neutrinos?
A future core-collapse supernova in our Galaxy will be detected by several
neutrino detectors around the world. The neutrinos escape from the supernova
core over several seconds from the time of collapse, unlike the electromagnetic
radiation, emitted from the envelope, which is delayed by a time of order
hours. In addition, the electromagnetic radiation can be obscured by dust in
the intervening interstellar space. The question therefore arises whether a
supernova can be located by its neutrinos alone. The early warning of a
supernova and its location might allow greatly improved astronomical
observations. The theme of the present work is a careful and realistic
assessment of this question, taking into account the statistical significance
of the various neutrino signals. Not surprisingly, neutrino-electron forward
scattering leads to a good determination of the supernova direction, even in
the presence of the large and nearly isotropic background from other reactions.
Even with the most pessimistic background assumptions, SuperKamiokande (SK) and
the Sudbury Neutrino Observatory (SNO) can restrict the supernova direction to
be within circles of radius and , respectively. Other
reactions with more events but weaker angular dependence are much less useful
for locating the supernova. Finally, there is the oft-discussed possibility of
triangulation, i.e., determination of the supernova direction based on an
arrival time delay between different detectors. Given the expected statistics
we show that, contrary to previous estimates, this technique does not allow a
good determination of the supernova direction.Comment: 11 pages including 2 figures. Revised version corrects typos, adds
some brief comment
P- and T-violating Schiff moment of the Mercury nucleus
The Schiff moment of the Hg nucleus was calculated using finite range
P- and T-violating weak nucleon-nucleon interaction. Effects of the core
polarization were considered in the framework of RPA with effective residual
forces.Comment: 10 pages and 2 figures,to appear in Yad. Fi
A Microscopic T-Violating Optical Potential: Implications for Neutron-Transmission Experiments
We derive a T-violating P-conserving optical potential for neutron-nucleus
scattering, starting from a uniquely determined two-body -exchange
interaction with the same symmetry. We then obtain limits on the T-violating
-nucleon coupling from neutron-transmission
experiments in Ho. The limits may soon compete with those from
measurements of atomic electric-dipole moments.Comment: 8 pages, 2 uuencoded figures in separate files (replaces version sent
earlier in the day with figures attached), in RevTeX 3, submitted to PR
- …