465 research outputs found

    ab initio frame transformation calculations of direct and indirect dissociative recombination rates of HeH+ + e-

    Full text link
    The HeH+^+ cation undergoes dissociative recombination with a free electron to produce neutral He and H fragments. We present calculations using ab initio quantum defects and Fano's rovibrational frame transformation technique, along with the methodology of PRL 89, 263003 (2002), to obtain the recombination rate both in the low-energy (1-300 meV) and high-energy (ca. 0.6 hartree) regions. We obtain very good agreement with experimental results, demonstrating that this relatively simple method is able to reproduce observed rates for both indirect dissociative recombination, driven by rovibrationally autoionizing states in the low-energy region, and direct dissociative recombination, driven by electronically autoionizing Rydberg states attached to higher-energy excited cation channels.Comment: Submitted to Phys Rev

    Estimates of rates for dissociative recombination of NO2+_2^+ + e−^- via various mechanisms

    Full text link
    We estimate rates for the dissociative recombination (DR) of NO2+_2^+ + e−^-. Although accurate excited state potential energy curves for the excited states of the neutral are not available, we estimate that the 1 2^2{\Phi}g_g and the 1 2^2{\Pi}g_g states of the neutral may intersect the ground state cation potential energy surface near its equilibrium geometry. Using fixed nuclei scattering calculations we estimate the rate for direct DR via these states and find it to be significant. We also perform approximate calculations of DR triggered by the indirect mechanism, which suggest that the indirect DR rate for NO2+_2^+ is insignificant compared to the direct rate.Comment: Submitted to Phys Rev

    Dissociative electron attachment to the H2O molecule. II. Nuclear dynamics on coupled electronic surfaces within the local complex potential model

    Get PDF
    We report the results of a first-principles study of dissociative electron attachment to H2O. The cross sections are obtained from nuclear dynamics calculations carried out in full dimensionality within the local complex potential model by using the multi-configuration time-dependent Hartree method. The calculations employ our previously obtained global, complex-valued, potential-energy surfaces for the three (doublet B1, doublet A1, and doublet B2) electronic Feshbach resonances involved in this process. These three metastable states of H2O- undergo several degeneracies, and we incorporate both the Renner-Teller coupling between the B1 and A1 states as well as the conical intersection between the A1 and B2 states into our treatment. The nuclear dynamics are inherently multidimensional and involve branching between different final product arrangements as well as extensive excitation of the diatomic fragment. Our results successfully mirror the qualitative features of the major fragment channels observed, but are less successful in reproducing the available results for some of the minor channels. We comment on the applicability of the local complex potential model to such a complicated resonant system.Comment: Corrected version of Phys Rev A 75, 012711 (2007

    Beyond the Shell Model: The Canonical Nuclear Many-Body Problem as an Effective Theory

    Get PDF
    We describe a strategy for attacking the canonical nuclear structure problem ---bound-state properties of a system of point nucleons interacting via a two-body potential---which involves an expansion in the number of particles scattering at high momenta, but is otherwise exact. The required self-consistent solutions of the Bloch-Horowitz equation for effective interactions and operators are obtained by an efficient Green's function method based on the Lanczos algorithm. We carry out this program for the simplest nuclei, d and 3^3He, to contrast a rigorous effective theory with the shell model, thereby illustrating several of the uncontrolled approximations in the latter.Comment: Revtex; two columns; four pages; two figures; submitted to Phys. Rev. Let

    Perturbative Effective Theory in an Oscillator Basis?

    Full text link
    The effective interaction/operator problem in nuclear physics is believed to be highly nonperturbative, requiring extended high-momentum spaces for accurate solution. We trace this to difficulties that arise at both short and long distances when the included space is defined in terms of a basis of harmonic oscillator Slater determinants. We show, in the simplest case of the deuteron, that both difficulties can be circumvented, yielding highly perturbative results in the potential even for modest (~6hw) included spaces.Comment: 10 pages, 4 figure

    Nuclear Anapole Moments

    Get PDF
    Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S−PS-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ``reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.Comment: 53 pages; 10 figures; revtex; submitted to Phys Rev

    Nuclear electron capture rate in stellar interiors and the case of 7Be

    Full text link
    Nuclear electron capture rate from continuum in an astrophysical plasma environment (like solar core) is calculated using a modified Debye-Huckel screening potential and the related non-Gaussian q-distribution of electron momenta. For q=1 the well-known Debye-Huckel results are recovered. The value of q can be derived from the fluctuation of number of particles and temperature inside the Debye sphere. For 7Be continuum electron capture in solar core, we find an increase of 7 -- 10 percent over the rate calculated with standard Debye-Huckel potential. The consequence of this results is a reduction of the same percentage of the SSM 8B solar neutrino flux, leaving unchanged the SSM 7Be flux.Comment: 8 pages, 1 figure, IOP macro style, submitted to JP
    • …
    corecore