41 research outputs found

    Enhancing the Hardened Properties of Recycled Concrete (RC) through Synergistic Incorporation of Fiber Reinforcement and Silica Fume

    Get PDF
    Portland cement concrete is fragile in tension and it has numerous negative impacts on the environment. To deal with these issues, both fiber reinforcement and recycled materials can be utilized to manufacture sustainable and ductile concrete. In this study, the synergistic effects of high-performance mineral admixture silica fume and glass fiber reinforcement were investigated on the hardened properties of RC. For this purpose, two concrete mix families, namely, NC and RC were prepared. To understand the benefits of synergistic utilization of glass fiber and silica fume, in both NC and RC, 0.5% glass fiber was incorporated with three different levels of silica fume. i.e., 0%, 5%, and 10%. Both strength and permeability-related durability properties were investigated. Results revealed that combined incorporation of 0.5% fiber and 10% silica fume can help in the production of RC having better mechanical and durability performance compared to reference “NC”. Simultaneous incorporation of silica fume and glass fiber produces a combined effect greater than their individual effects on both mechanical and permeability properties of concrete. Silica fume plays a very dominant and positive role in the development of CS, WA, and CIPR of RC, whereas glass fiber plays a vital role in upgrading STS and FS of RC and whereas, with the addition of 0.5% glass fiber, RC can yield 8–9 times higher flexural toughness than that of the plain NC

    Synergistic effect of fibres on the physical, mechanical, and microstructural properties of aerogel-based thermal insulating renders

    Get PDF
    There is an increasing demand for highly efficient thermal insulating materials in buildings. This study presents a novel solution incorporating nanomaterials, such as silica aerogel, which can achieve low thermal conductivity values (below 0.030 W m-1 K-1) in renders. A key challenge of using aerogels is their low mechanical strength and high capillary water absorption. Here we describe a novel approach employing fibres which mitigates against some key properties which are decreased as a consequence of using aerogel. The incorporation of aramid (0.50%), sisal (0.10%), and biomass (0.10%) fibres (by total volume) was evaluated experimentally in terms of physical, mechanical, and microstructural properties. A synergistic effect between the fibres and aerogel increased mechanical resistance and a reduction in the capillary water absorption, when compared to the reference render (without fibres), whilst maintaining the low thermal conductivity. However, these properties depended significantly on whether the fibres were synthetic or organic. This study is important as it demonstrates that aerogel-based fibre-enhanced thermal renders can contribute to higher energy efficiency in both new construction and retrofitting. The use of these materials will have a direct positive impact on addressing the climate crisis

    Assessment of High Performance Self-Consolidating Concrete through an Experimental and Analytical Multi-Parameter Approach

    No full text
    High-performance self-consolidating concrete is one of the most promising developments in the construction industry. Nowadays, concrete designers and ready-mix companies are seeking optimum concrete in terms of environmental impact, cost, mechanical performance, as well as fresh-state properties. This can be achieved by considering the mentioned parameters simultaneously; typically, by integrating conventional concrete systems with different types of high-performance waste mineral admixtures (i.e., micro-silica and fly ash) and ultra-high range plasticizers. In this study, fresh-state properties (slump, flow, restricted flow), hardened-state properties (density, water absorption by immersion, compressive strength, splitting tensile strength, flexural strength, stress-strain relationship, modulus of elasticity, oven heating test, fire-resistance, and freeze-thaw cycles), and cost of high-performance self-consolidating concrete (HPSCC) prepared with waste mineral admixtures, were examined and compared with three different reference mixes, including normal strength-vibrated concrete (NSVC), high-strength self-compacted concrete (HSSCC), and high-performance highly-viscous concrete (HPVC). Then, a multi parameter analytical approach was considered to identify the optimum concrete mix in terms of cost, workability, strength, and durability

    Influence of Cracking on the Durability of Reinforced Concrete with Carbon Nanotubes

    No full text
    This study focuses on the influence of natural and artificially induced cracks on the durability of concrete reinforced with carbon nanotubes (CNT). Pre-cracked concrete mixes, unreinforced or reinforced with 0.1% CNT, are characterized in terms of capillary absorption, carbonation, and chloride penetration resistance, and compared to the uncracked reference concrete. The mechanical strength and durability properties were improved in uncracked CNT-reinforced concrete, without significantly affecting its density and workability. The efficiency of CNT was higher when the concrete was previously subjected to drying conditions. For all tested properties, the incorporation of CNT was effective in reducing the influence of artificial and natural cracks on concrete durability. The main contribution of CNT occurred in the crack surrounding region. Depending on the analyzed property and cracking conditions, the significant reduction of durability in cracked concrete may be 10–30% attenuated when CNT is incorporated. The effect was more pronounced in mechanically induced natural cracks, where CNT may better participate in their vicinity

    Investigating the Effects of Polypropylene Fibers on the Mechanical Strength, Permeability, and Erosion Resistance of Freshwater and Seawater Mixed Concretes

    No full text
    Seawater mixed (SW) concrete lessens the freshwater (FW) demand and eases the stress on the already depleting FW resources. The use of SW concrete is a sustainable solution that mitigates the environmental impact of concrete production, especially in coastal regions and islands vulnerable to FW scarcity. This study investigated the influence of polypropylene (PP) fiber incorporation on high-performance-SW concrete’s long-term mechanical and durability performance. The findings indicate that the incorporation of seawater in the production of concrete containing ground granulated blast furnace slag (GGBFS) has a beneficial effect on its early strength. This is due to the fact that SW accelerates the hardening process. SW concrete mixes showed an improvement in strength with aging. The difference between the strength of SW and FW concretes reduced with aging. The PP fiber showed phenomenal improvements in the tensile properties of SW and FW concretes. At the addition of 0.3% PP fiber, SW yielded 56% and 48% higher splitting tensile and flexural strength than plain FW concrete at 28 days, respectively. The use of 0.15% of PP fiber caused notable reductions of around 20% in the water absorption (WA) capacity and a 12–20% reduction in chloride ion permeability (CIP) of SW concrete. The incorporation of PP fiber increases the number of drying–wetting cycles to initiate the erosion of SW and FW concretes in a simulated environment. The use of 0.15% PP fiber is beneficial, as compared to 0.3% PP fiber to control the tidal erosion of SW and FW concretes. After exposure to 126 drying–wetting cycles (stimulated tidal erosion), the mass loss of SW concrete was reduced from 0.56% to 0.22%

    Magnesia (MgO) production and characterization, and its influence on the performance of cementitious materials: a review

    Get PDF
    This paper presents a literature review concerning the characteristics of MgO (magnesium oxide or magnesia) and its application in cementitious materials. It starts with the characterization of MgO in terms of production processes, calcination temperatures, reactivity, and physical properties. Relationships between different MgO characteristics are established. Then, the influence of MgO incorporation on the properties of cementitious materials is investigated. The mechanical strength and durability behaviour of cement pastes, mortars and concrete mixes made with MgO are discussed. The studied properties of MgO-cement mixes include compressive strength, flexural strength, tensile strength, modulus of elasticity, water absorption, porosity, carbonation, chloride ion penetration, shrinkage, expansion, and hydration degree. In addition, microscopic analyses of MgO-cement mixes are also assessed. Summarizing the results of different studies, it is concluded that MgO incorporation in cementitious materials generally decreases the mechanical strength and shrinkage, and increases the porosity, expansion, carbonation and chloride ion migration. However, it should be emphasized that the properties of the specific MgO used (mainly the calcination temperature, the reactivity and the surface area) have a significant influence on the characteristics of the cementitious materials produced.info:eu-repo/semantics/publishedVersio

    Development of Ductile and Durable High Strength Concrete (HSC) through Interactive Incorporation of Coir Waste and Silica Fume

    No full text
    The issue of brittleness and low post-peak load energy associated with the plain HSC led to the development of fiber-reinforced concrete (FRC) by using discrete fiber filaments in the plain matrix. Due to the high environmental impact of industrial fibers and plasticizers, FRC development is ecologically challenged. Sustainability issues demand the application of eco-friendly development of FRC. This study is aimed at the evaluation of coir as a fiber-reinforcement material in HSC, with the incorporation of silica fume as a partial replacement of cement. For this purpose, a total of 12 concrete mixes were produced by using three different doses of coir (0%, 1%, 1.5%, and 2% by wt. of binder) with silica fume (0%, 5%, and 10% as volumetric replacements of cement). The examined parameters include compressive strength, shear strength, splitting tensile strength, ultrasonic pulse velocity, water absorption, and chloride ion permeability. The scanning electron microscopy (SEM) technique was adopted to observe the microstructure of the CF-reinforced concrete. The results revealed that due to the CF addition, the compressive strength of HSC reduces notably; however, the splitting tensile strength and shear strength experienced notable improvements. At the combined incorporation of 1.5% CF with 5% silica fume, the splitting tensile strength and shear strength of the concrete experienced improvements of 47% and 70%, respectively, compared to that of the control mix. The CF incorporation is detrimental to the imperviousness of concrete. The combined incorporation of CF and silica fume is recommended to minimize the negative effects of CF on the permeability resistance of concrete. The SEM results revealed that CF underwent a minor shrinkage with the age
    corecore