2,175 research outputs found

    Environmental changes and radioactive tracers

    Get PDF

    Reactivity of [Re\u3csub\u3e2\u3c/sub\u3e(CO)\u3csub\u3e8\u3c/sub\u3e(MeCN)\u3csub\u3e2\u3c/sub\u3e] with Thiazoles: Hydrido Bridged Dirhenium Compounds Bearing Thiazoles in Different Coordination Modes

    Get PDF
    Reactions of the labile compound [Re2(CO)8(MeCN)2] with thiazole and 4-methylthiazole in refluxing benzene afforded the new compounds [Re2(CO)7{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}(μ-H)] (1, R = H; 2, R = CH3), [Re2(CO)6{μ-2,3-η2-C3H(R)NS}{η1-NC3H2(4-R)S}2(μ-H)] (3, R = H; 4, R = CH3) and fac-[Re(CO)3(Cl){η1-NC3H2(4-R)S}2] (5, R = H; 6, R = CH3). Compounds 1 and 2 contain two rhenium atoms, one bridging thiazolide ligand, coordinated through the C(2) and N atoms and a η1-thiazole ligand coordinated through the nitrogen atom to the same Re as the thiazolide nitrogen. Compounds 3 and 4 contain a Re2(CO)6 group with one bridging thiazolide ligand coordinated through the C(2) and N atoms and two N-coordinated η1-thiazole ligands, each coordinated to one Re atom. A hydride ligand, formed by oxidative-addition of C(2)–H bond of the ligand, bridges Re–Re bond opposite the thiazolide ligand in compounds 1–4. Compound 5 contains a single rhenium atom with three carbonyl ligands, two N-coordinated η1-thiazole ligands and a terminal Cl ligand. Treatment of both 1 and 2 with 5 equiv. of thiazole and 4-methylthiazole in the presence of Me3NO in refluxing benzene afforded 3 and 4, respectively. Further activation of the coordinated η1-thiazole ligands in 1–4 is, however, unsuccessful and results only nonspecific decomposition. The single-crystal XRD structures of 1–5 are reported

    Photosynthesis Under a Red Sun: Predicting the absorption characteristics of an extraterrestrial light-harvesting antenna

    Get PDF
    Here we discuss the feasibility of photosynthesis on Earth-like rocky planets in close orbit around ultra-cool red dwarf stars. Stars of this type have very limited emission in the \textit{photosynthetically active} region of the spectrum (400−700 nm), suggesting that they may not be able to support oxygenic photosynthesis. However, photoautotrophs on Earth frequently exploit very dim environments with the aid of highly structured and extremely efficient antenna systems. Moreover, the anoxygenic photosynthetic bacteria, which do not need to oxidize water to source electrons, can exploit far red and near infrared light. Here we apply a simple model of a photosynthetic antenna to a range of model stellar spectra, ranging from ultra-cool (2300 K) to Sun-like (5800 K). We assume that a photosynthetic organism will evolve an antenna that maximizes the rate of energy input while also minimizing fluctuations. The latter is the 'noise cancelling' principle recently reported by Arp et al. 2020. Applied to the Solar spectrum this predicts optimal antenna configurations in agreement with the chlorophyll Soret absorption bands. Applied to cooler stars, the optimal antenna peaks become redder with decreasing stellar temperature, crossing to the typical wavelength ranges associated with anoxygenic photoautotrophs at ∼3300 K. Lastly, we compare the relative input power delivered by antennae of equivalent size around different stars and find that the predicted variation is within the same order of magnitude. We conclude that low-mass stars do not automatically present light-limiting conditions for photosynthesis but they may select for anoxygenic organisms

    Protoplanetary disc truncation mechanisms in stellar clusters: Comparing external photoevaporation and tidal encounters

    Get PDF
    Most stars form and spend their early life in regions of enhanced stellar density. Therefore the evolution of protoplanetary discs (PPDs) hosted by such stars are subject to the influence of other members of the cluster. Physically, PPDs might be truncated either by photoevaporation due to ultraviolet flux from massive stars, or tidal truncation due to close stellar encounters. Here we aim to compare the two effects in real cluster environments. In this vein we first review the properties of well studied stellar clusters with a focus on stellar number density, which largely dictates the degree of tidal truncation, and far ultraviolet (FUV) flux, which is indicative of the rate of external photoevaporation. We then review the theoretical PPD truncation radius due to an arbitrary encounter, additionally taking into account the role of eccentric encounters that play a role in hot clusters with a 1D velocity dispersion σv>2\sigma_v > 2 km/s. Our treatment is then applied statistically to varying local environments to establish a canonical threshold for the local stellar density (nc>104n_{c} > 10^4 pc−3^{-3}) for which encounters can play a significant role in shaping the distribution of PPD radii over a timescale ∼3\sim 3 Myr. By combining theoretical mass loss rates due to FUV flux with viscous spreading in a PPD we establish a similar threshold for which a massive disc is completely destroyed by external photoevaporation. Comparing these thresholds in local clusters we find that if either mechanism has a significant impact on the PPD population then photoevaporation is always the dominating influence.ERC Advanced Grant grant agreement 34113

    Framework for Motorcycle Risk Assessment Using Onboard Panoramic Camera

    Get PDF
    Traditional safety analysis methods based on historical crash data and simulation models have limitations in capturing real-world driving scenarios. In this experiment, panoramic videos recorded from a motorcyclist’s helmet in Bangkok, Thailand, were narrated using an image-to-text model and then put into a Large Language Model (LLM) to identify potential hazards and assess crash risks. The framework can assess static and moving objects with the potential for early warning and incident analysis. However, the limitations of the existing image-to-text model cause its inability to handle panoramic images effectively

    Flavone acetic acid (FAA) with recombinant interleukin-2 (rIL-2) in advanced malignant melanoma. III: Cytokine studies.

    Get PDF
    Twelve patients undergoing IL-2 and flavone acetic acid (FAA) combination immunotherapy for advanced melanoma were studied throughout treatment for the induction of measurable levels of bioactive TNF, GM-CSF and IL-6 in their serum. This was to assess the extent of secondary cytokine induction in these patients and the possible role of such cytokines in both the toxic and therapeutic responses. The nature of the treatment schedule enabled these cytokines to be measured in response to FAA alone, FAA/IL-2 and FAA alone following IL-2/FAA activation of target cells. A small rise in the serum levels of these cytokines was seen on the initial course of FAA/IL-2 but this was minor compared to the marked elevation in levels 2-8 h following the initiation of the third course of FAA given with or without IL-2 and at a time point which coincided with maximum toxicity in those patients who experienced it. These results show that FAA alone can induce cytokine release from primed target cells. This may be associated with the therapeutic effect and/or toxicity of the agent
    • …
    corecore