2 research outputs found

    Runx1 deficiency protects against adverse cardiac remodeling following myocardial infarction

    Get PDF
    Background: Myocardial infarction (MI) is a leading cause of heart failure and death worldwide. Preservation of contractile function and protection against adverse changes in ventricular architecture (cardiac remodeling) are key factors to limiting progression of this condition to heart failure. Consequently, new therapeutic targets are urgently required to achieve this aim. Expression of the Runx1 transcription factor is increased in adult cardiomyocytes after MI; however, the functional role of Runx1 in the heart is unknown. Methods: To address this question, we have generated a novel tamoxifen-inducible cardiomyocyte-specific Runx1-deficient mouse. Mice were subjected to MI by means of coronary artery ligation. Cardiac remodeling and contractile function were assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. Results: Runx1-deficient mice were protected against adverse cardiac remodeling after MI, maintaining ventricular wall thickness and contractile function. Furthermore, these mice lacked eccentric hypertrophy, and their cardiomyocytes exhibited markedly improved calcium handling. At the mechanistic level, these effects were achieved through increased phosphorylation of phospholamban by protein kinase A and relief of sarco/endoplasmic reticulum Ca2+-ATPase inhibition. Enhanced sarco/endoplasmic reticulum Ca2+-ATPase activity in Runx1-deficient mice increased sarcoplasmic reticulum calcium content and sarcoplasmic reticulum–mediated calcium release, preserving cardiomyocyte contraction after MI. Conclusions: Our data identified Runx1 as a novel therapeutic target with translational potential to counteract the effects of adverse cardiac remodeling, thereby improving survival and quality of life among patients with MI

    Inhibition of myocardial cathepsin-L release during reperfusion following myocardial infarction improves cardiac function and reduces infarct size

    No full text
    Aims: Identifying novel mediators of lethal myocardial reperfusion injury that can be targeted during primary percutaneous coronary intervention (PPCI) is key to limiting the progression of patients with ST-elevated myocardial infarction (STEMI) to heart failure. Here we show through parallel clinical and integrative preclinical studies the significance of the protease cathepsin-L on cardiac function during reperfusion injury. Methods and Results: We found that direct cardiac release of cathepsin-L in STEMI patients (n = 76) immediately post-PPCI leads to elevated serum cathepsin-L levels and that serum levels of cathepsin-L in the first 24 hour post-reperfusion are associated with reduced cardiac contractile function and increased infarct size. Preclinical studies, demonstrate that inhibition of cathepsin-L release following reperfusion injury with CAA0225 reduces infarct size and improves cardiac contractile function by limiting abnormal cardiomyocyte calcium handling and apoptosis. Conclusion: Our findings suggest that cathepsin-L is a novel therapeutic target that could be exploited clinically to counteract the deleterious effects of acute reperfusion injury after an acute STEMI. Translational perspective: New therapeutic targets are urgently required to limit myocardial damage after reperfusion injury. We identified cardiac release of the protease cathepsin-L among patients following primary percutaneous coronary intervention (PPCI). Elevated serum levels of cathepsin-L were associated with reduced contractile function and increased infarct size at 24 hour and 6 months post-PPCI. Work conducted using animal models indicated that cardiac release of cathepsin-L mediated cardiac dysfunction following reperfusion injury. Specific inhibition of cathepsin-L prevented abnormal calcium handling, reduced infarct size and improved contractile function. These novel findings offer the prospect of targeting cathepsin-L-mediated cardiac dysfunction after PPCI
    corecore