344 research outputs found

    A Comment on Junction and Energy Conditions in Thin Shells

    Full text link
    This comment contains a suggestion for a slight modification of Israel's covariant formulation of junction conditions between two spacetimes, placing both sides on equal footing with normals having uniquely defined orientations. The signs of mass energy densities in thin shells at the junction depend not only on the orientations of the normals and it is useful therefore to discuss the sign separately. Calculations gain in clarity by not choosing the orientations in advance. Simple examples illustrate our point and complete previous classifications of spherical thin shells in spherically symmetric spacetimes relevant to cosmology.Comment: (Tex file + PS file with a figure) Tex errors were correcte

    Maintaining a Wormhole with a Scalar Field

    Get PDF
    It is well known that it takes matter that violates the averaged weak energy condition to hold the throat of a wormhole open. The production of such ``exotic'' matter is usually discussed within the context of quantum field theory. In this paper I show that it is possible to produce the exotic matter required to hold a wormhole open classically. This is accomplished by coupling a scalar field to matter that satisfies the weak energy condition. The energy-momentum tensor of the scalar field and the matter separately satisfy the weak energy condition, but there exists an interaction energy-momentum tensor that does not. It is this interaction energy-momentum tensor that allows the wormhole to be maintained.Comment: 12 pages, LaTe

    Lorentzian and signature changing branes

    Full text link
    General hypersurface layers are considered in order to describe brane-worlds and shell cosmologies. No restriction is placed on the causal character of the hypersurface which may thus have internal changes of signature. Strengthening the results in our previous letter [1], we confirm that a good, regular and consistent description of signature change is achieved in these brane/shells scenarios, while keeping the hypersurface and the bulk completely regular. Our formalism allows for a unified description of the traditional timelike branes/shells together with the signature-changing, or pure null, ones. This allows for a detailed comparison of the results in both situations. An application to the case of hypersurface layers in static bulks is presented, leading to the general Robertson-Walker geometry on the layer --with a possible signature change. Explicit examples on anti de Sitter bulks are then studied. The permitted behaviours in different settings (Z2Z_{2}-mirror branes, asymmetric shells, signature-changing branes) are analysed in detail. We show in particular that (i) in asymmetric shells there is an upper bound for the energy density, and (ii) that the energy density within the brane vanishes when approaching a change of signature. The description of a signature change as a `singularity' seen from within the brane is considered. We also find new relations between the fundamental constants in the brane/shell, its tension, and the cosmological and gravitational constants of the bulk, independently of the existence or not of a change of signature.Comment: 23 pages, 2 figure

    van Vleck determinants: geodesic focussing and defocussing in Lorentzian spacetimes

    Full text link
    The van Vleck determinant is an ubiquitous object, arising in many physically interesting situations such as: (1) WKB approximations to quantum time evolution operators and Green functions. (2) Adiabatic approximations to heat kernels. (3) One loop approximations to functional integrals. (4) The theory of caustics in geometrical optics and ultrasonics. (5) The focussing and defocussing of geodesic flows in Riemannian manifolds. While all of these topics are interrelated, the present paper is particularly concerned with the last case and presents extensive theoretical developments that aid in the computation of the van Vleck determinant associated with geodesic flows in Lorentzian spacetimes. {\sl A fortiori} these developments have important implications for the entire array of topics indicated. PACS: 04.20.-q, 04.20.Cv, 04.60.+n. To appear in Physical Review D47 (1993) 15 March.Comment: plain LaTeX, 18 page

    Effective Action and Thermodynamics of Radiating Shells in General Relativity

    Get PDF
    An effective action is obtained for the area and mass aspect of a thin shell of radiating self-gravitating matter. On following a mini-superspace approach, the geometry of the embedding space-time is not dynamical but fixed to be either Minkowski or Schwarzschild inside the shell and Vaidya in the external space filled with radiation. The Euler-Lagrange equations of motion are discussed and shown to entail the expected invariance of the effective Lagrangian under time-reparametrization. They are equivalent to the usual junction equations and suggest a macroscopic quasi-static thermodynamic description.Comment: LATeX, 20 pages, 2 Fig

    Upper bound for entropy in asymptotically de Sitter space-time

    Get PDF
    We investigate nature of asymptotically de Sitter space-times containing a black hole. We show that if the matter fields satisfy the dominant energy condition and the cosmic censorship holds in the considering space-time, the area of the cosmological event horizon for an observer approaching a future timelike infinity does not decrease, i.e. the second law is satisfied. We also show under the same conditions that the total area of the black hole and the cosmological event horizon, a quarter of which is the total Bekenstein-Hawking entropy, is less than 12π/Λ12\pi/\Lambda, where Λ\Lambda is a cosmological constant. Physical implications are also discussed.Comment: 9 pages, REVTeX,2 figures; to be published in Phys.Rev.

    Quasi-Spherical Light Cones of the Kerr Geometry

    Get PDF
    Quasi-spherical light cones are lightlike hypersurfaces of the Kerr geometry that are asymptotic to Minkowski light cones at infinity. We develop the equations of these surfaces and examine their properties. In particular, we show that they are free of caustics for all positive values of the Kerr radial coordinate r. Useful applications include the propagation of high-frequency waves, the definition of Kruskal-like coordinates for a spinning black hole and the characteristic initial-value problem.Comment: LaTeX, 14 pages, 2 figure

    Classical dynamics and stability of collapsing thick shells of matter

    Full text link
    We study the collapse towards the gravitational radius of a macroscopic spherical thick shell surrounding an inner massive core. This overall electrically neutral macroshell is composed by many nested delta-like massive microshells which can bear non-zero electric charge, and a possibly non-zero cosmological constant is also included. The dynamics of the shells is described by means of Israel's (Lanczos) junction conditions for singular hypersurfaces and, adopting a Hartree (mean field) approach, an effective Hamiltonian for the motion of each microshell is derived which allows to check the stability of the matter composing the macroshell. We end by briefly commenting on the quantum effects which may arise from the extension of our classical treatment to the semiclassical level.Comment: 16 pages in IOP style, 8 figures, accepted for publication in Class. Quantum Gra

    van Vleck determinants: traversable wormhole spacetimes

    Full text link
    Calculating the van Vleck determinant in traversable wormhole spacetimes is an important ingredient in understanding the physical basis behind Hawking's chronology protection conjecture. This paper presents extensive computations of this object --- at least in the short--throat flat--space approximation. An important technical trick is to use an extension of the usual junction condition formalism to probe the full Riemann tensor associated with a thin shell of matter. Implications with regard to Hawking's chronology protection conjecture are discussed. Indeed, any attempt to transform a single isolated wormhole into a time machine results in large vacuum polarization effects sufficient to disrupt the internal structure of the wormhole before the onset of Planck scale physics, and before the onset of time travel. On the other hand, it is possible to set up a putative time machine built out of two or more wormholes, each of which taken in isolation is not itself a time machine. Such ``Roman configurations'' are much more subtle to analyse. For some particularly bizarre configurations (not traversable by humans) the vacuum polarization effects can be arranged to be arbitrarily small at the onset of Planck scale physics. This indicates that the disruption scale has been pushed down into the Planck slop. Ultimately, for these configurations, questions regarding the truth or falsity of Hawking's chronology protection can only be addressed by entering the uncharted wastelands of full fledged quantum gravity.Comment: 42 pages, ReV_TeX 3.

    Self-Screening Hawking Atmosphere in the Presence of a Bulk Viscosity

    Get PDF
    The recent theory of 't Hooft [ Nucl. Phys. Suppl. {\bf 68}, 174 (1998)] models the black hole as a system endowed with an envelope of matter that obeys an equation of state in the form p=(γ1)ρ p=(\gamma -1)\rho, and acts as a source in Einstein's equations. The present paper generalizes the 't Hooft theory so as to take into account a bulk viscosity ζ\zeta in the fluid. It is shown that even a slight positive value of ζ\zeta will suffice to yield complete agreement with the Hawking formula for the entropy of the black hole, if the value of the constant γ\gamma takes a value that is slightly less than 4/3. The value γ=4/3\gamma=4/3 corresponds to a radiation fluid.Comment: 12 pages, LaTeX, no figures, minor extensions of the discussion. To appear in PR
    corecore