75 research outputs found

    Convective infux/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways

    Get PDF
    Tracers injected into CSF pass into the brain alongside arteries and out again. This has been recently termed the "glymphatic system" that proposes tracers enter the brain along periarterial "spaces" and leave the brain along the walls of veins. The object of the present study is to test the hypothesis that: (1) tracers from the CSF enter the cerebral cortex along pial-glial basement membranes as there are no perivascular "spaces" around cortical arteries, (2) tracers leave the brain along smooth muscle cell basement membranes that form the Intramural Peri-Arterial Drainage (IPAD) pathways for the elimination of interstitial fluid and solutes from the brain. 2 μL of 100 μM soluble, fluorescent fixable amyloid β (Aβ) were injected into the CSF of the cisterna magna of 6-10 and 24-30 month-old male mice and their brains were examined 5 and 30 min later. At 5 min, immunocytochemistry and confocal microscopy revealed Aβ on the outer aspects of cortical arteries colocalized with α-2 laminin in the pial-glial basement membranes. At 30 min, Aβ was colocalised with collagen IV in smooth muscle cell basement membranes in the walls of cortical arteries corresponding to the IPAD pathways. No evidence for drainage along the walls of veins was found. Measurements of the depth of penetration of tracer were taken from 11 regions of the brain. Maximum depths of penetration of tracer into the brain were achieved in the pons and caudoputamen. Conclusions drawn from the present study are that tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways. The exit route is along IPAD pathways in which Aβ accumulates in cerebral amyloid angiopathy (CAA) in Alzheimer's disease. Results from this study suggest that CSF may be a suitable route for delivery of therapies for neurological diseases, including CAA

    Appetitive motivation and associated neurobiology change differentially across the life course of mouse offspring exposed to peri- and postnatal high fat feeding

    Get PDF
    Alterations in neural pathways that regulate appetitive motivation may contribute to increased obesity risk in offspring born to mothers fed a high fat (HF) diet. However, current findings on the impact of maternal obesity on motivation in offspring are inconclusive, and there is no information about the long-lasting effects in aged animals. This study examined the longitudinal effect of perinatal and chronic postnatal HF intake on appetitive motivation in young and aged offspring. Female C57Bl/6 were fed either a control (C) or HF diet before mating through to lactation. At weaning, offspring were maintained on the C or HF diet, generating the following four diet groups: C/C, C/HF, HF/C, and HF/HF based on the pre/post weaning diet. At 6 months, motivation was higher in HF/C females, but lower in male and female C/HF and HF/HF mice. By 12 months, this difference was lost, as C-fed animals became less motivated, while motivation increased in HF-fed mice. The mRNA levels of dopamine receptor 1 and 2 increased with age, while cannabinoid receptor 1 and μ-opioid receptor expression remained stable or decreased in mesolimbic and mesocortical dopaminergic pathways. Results from this study suggest that perinatal and chronic postnatal HF feeding produced opposite effects on appetitive motivation in young adult offspring mice, which was also reflected in the shift in motivation over time. These results have significant implications for patterns of hedonic eating across the life course and the relative risk of obesity at different time points

    Cerebrospinal fluid dynamics modulation by diet and cytokines in rats.

    Get PDF
    Background Idiopathic intracranial hypertension (IIH) is a neurological disorder characterised by raised cerebrospinal fluid (CSF) pressure in the absence of any intracranial pathology. IIH mainly affects women with obesity between the ages of 15 and 45. Two possible mechanisms that could explain the increased CSF pressure in IIH are excessive CSF production by the choroid plexus (CP) epithelium or impaired CSF drainage from the brain. However, the molecular mechanisms controlling these mechanisms in IIH remain to be determined. Methods In vivo ventriculo-cisternal perfusion (VCP) and variable rate infusion (VRI) techniques were used to assess changes in rates of CSF secretion and resistance to CSF drainage in female and male Wistar rats fed either a control (C) or high-fat (HF) diet (under anaesthesia with 20 μl/100 g medetomidine, 50 μl/100 g ketamine i.p). In addition, CSF secretion and drainage were assessed in female rats following treatment with inflammatory mediators known to be elevated in the CSF of IIH patients: C-C motif chemokine ligand 2 (CCL2), interleukin (IL)-17 (IL-17), IL-6, IL-1β, tumour necrosis factor-α (TNF-α), as well as glucocorticoid hydrocortisone (HC). Results Female rats fed the HF diet had greater CSF secretion compared to those on control diet (3.18 ± 0.12 μl/min HF, 1.49 ± 0.15 μl/min control). Increased CSF secretion was seen in both groups following HC treatment (by 132% in controls and 114% in HF) but only in control rats following TNF-α treatment (137% increase). The resistance to CSF drainage was not different between control and HF fed female rats (6.13 ± 0.44 mmH O min/μl controls, and 7.09 ± 0.26 mmH O min/μl HF). and when treated with CCL2, both groups displayed an increase in resistance to CSF drainage of 141% (controls) and 139% (HF) indicating lower levels of CSF drainage. Conclusions Weight loss and therapies targeting HC, TNF-α and CCL2, whether separately or in combination, may be beneficial to modulate rates of CSF secretion and/or resistance to CSF drainage pathways, both factors likely contributing to the raised intracranial pressure (ICP) observed in female IIH patients with obesity.</p

    A Simulation Model of Periarterial Clearance of Amyloid-β from the Brain

    Get PDF
    The accumulation of soluble and insoluble amyloid-β (Aβ) in the brain indicates failure of elimination of Aβ from the brain with age and Alzheimer's disease (AD). There is a variety of mechanisms for elimination of Aβ from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of Aβ into the blood and periarterial lymphatic drainage of Aβ. Although the brain possesses no conventional lymphatics, experimental studies have shown that fluid and solutes, such as Aβ, are eliminated from the brain along 100 nm wide basement membranes in the walls of cerebral capillaries and arteries. This lymphatic drainage pathway is reflected in the deposition of Aβ in the walls of human arteries with age and AD as cerebral amyloid angiopathy (CAA). Initially, Aβ diffuses through the extracellular spaces of gray matter in the brain and then enters basement membranes in capillaries and arteries to flow out of the brain. Although diffusion through the extracellular spaces of the brain has been well characterized, the exact mechanism whereby perivascular elimination of Aβ occurs has not been resolved. Here we use a computational model to describe the process of periarterial drainage in the context of diffusion in the brain, demonstrating that periarterial drainage along basement membranes is very rapid compared with diffusion. Our results are a validation of experimental data and are significant in the context of failure of periarterial drainage as a mechanism underlying the pathogenesis of AD as well as complications associated with its immunotherapy

    Amyloid and tau in the brain in sporadic Alzheimer's disease: defining the chicken and the egg

    Get PDF
    In the October 2013 issue of Acta Neuropathologica there were three very interesting articles on: Amyloid or tau: the chicken or the egg? In the first article, David Mann and John Hardy argued that the deposition of aggregated amyloid β (Aβ) protein in the brain is a primary driving force behind the pathogenesis of Alzheimer’s disease with tau pathology following as a consequential or at least a secondary event. In the communication that followed, Braak and Del Tredici presented the contrary argument with accumulation of tau protein as the primary event in sporadic Alzheimer’s disease. Attems and Jellinger questioned the concept of a chicken and egg and suggested that the majority of cases of age-associated dementia are not caused by one single primary pathological mechanism

    Vascular basement membranes as pathways for the passage of fluid into and out of the brain

    Get PDF
    In the absence of conventional lymphatics, drainage of interstitial fluid and solutes from the brain parenchyma to cervical lymph nodes is along basement membranes in the walls of cerebral capillaries and tunica media of arteries. Perivascular pathways are also involved in the entry of CSF into the brain by the convective influx/glymphatic system. The objective of this study is to differentiate the cerebral vascular basement membrane pathways by which fluid passes out of the brain from the pathway by which CSF enters the brain. Experiment 1: 0.5 µl of soluble biotinylated or fluorescent Aβ, or 1 µl 15 nm gold nanoparticles was injected into the mouse hippocampus and their distributions determined at 5 min by transmission electron microscopy. Aβ was distributed within the extracellular spaces of the hippocampus and within basement membranes of capillaries and tunica media of arteries. Nanoparticles did not enter capillary basement membranes from the extracellular spaces. Experiment 2: 2 µl of 15 nm nanoparticles were injected into mouse CSF. Within 5min, groups of nanoparticles were present in the pial-glial basement membrane on the outer aspect of cortical arteries between the investing layer of pia mater and the glia limitans. The results of this study and previous research suggest that cerebral vascular basement membranes form the pathways by which fluid passes into and out of the brain but that different basement membrane layers are involved. The significance of these findings for neuroimmunology, Alzheimer's disease, drug delivery to the brain and the concept of the Virchow-Robin space are discussed

    Phosphodiesterase III inhibitor promotes drainage of cerebrovascular β-amyloid

    Get PDF
    The predominant action of cilostazol on Aβ metabolism is likely to facilitate Aβ clearance due to the sustained cerebrovascular function in vivo. Our findings mechanistically demonstrate that cilostazol is a promising therapeutic approach for AD and CAA
    • …
    corecore