2,305 research outputs found

    Life systems for a lunar base

    Get PDF
    The Biosphere 2 project is pioneering work on life systems that can serve as a prototype for long-term habitation on the Moon. This project will also facilitate the understanding of the smaller systems that will be needed for initial lunar base life-support functions. In its recommendation for a policy for the next 50 years in space, the National Commission on Space urged, 'To explore and settle the inner Solar System, we must develop biospheres of smaller size, and learn how to build and maintain them' (National Commission on Space, 1986). The Biosphere 2 project, along with its Biospheric Research and Development Center, is a materially closed and informationally and energetically open system capable of supporting a human crew of eight, undertaking work to meet this need. This paper gives an overview of the Space Biospheres Ventures' endeavor and its lunar applications

    Professional Prerequisites

    Get PDF

    Integrated economic modeling of global and regional micronutrient security:

    Get PDF
    In this paper, we examine the implications of alternative country-specific scenarios for biofortification on the reduction of micronutrient deficiency prevalence in under-fives. The scenarios are implemented within a long-term projections model of agriculture production and consumption, given the timeframe needed to develop and implement biofortification of crops and the need to account for changing diets over time. The effectiveness of the various biofortification strategies is largely determined by the evolution of regional dietary patterns over time, which show continued reliance on staple food crops among the poor. It suggests that cereal grain-focused biofortification is likely to be most effective in South Asia, while targeting roots and tubers is most effective in Sub-Saharan Africa.Biofortification, Micronutrients, Economic models,

    Confidentiality Protection in the 2020 US Census of Population and Housing

    Full text link
    In an era where external data and computational capabilities far exceed statistical agencies' own resources and capabilities, they face the renewed challenge of protecting the confidentiality of underlying microdata when publishing statistics in very granular form and ensuring that these granular data are used for statistical purposes only. Conventional statistical disclosure limitation methods are too fragile to address this new challenge. This article discusses the deployment of a differential privacy framework for the 2020 US Census that was customized to protect confidentiality, particularly the most detailed geographic and demographic categories, and deliver controlled accuracy across the full geographic hierarchy.Comment: Version 2 corrects a few transcription errors in Tables 2, 3 and 5. Version 3 adds final journal copy edits to the preprin

    Rho-meson form factors and QCD sum rules

    Full text link
    We present predictions for rho-meson form factors obtained from the analysis of QCD sum rules in next-to-leading order of perturbation theory. The radiative corrections turn out to be sizeable and should be taken into account in rigorous theoretical analysis.Comment: LaTeX file, 14 pages, 7 figure

    Correspondence on the introduction of salmon from Scotland into the rivers of Tasmania

    Get PDF
    Correspondence presented to the Royal Society regarding the introduction of salmon from Scotland to Tasmania dated between 13th August 1849 and the 16th May 1850

    Regularization-independent study of renormalized non-perturbative quenched QED

    Get PDF
    A recently proposed regularization-independent method is used for the first time to solve the renormalized fermion Schwinger-Dyson equation numerically in quenched QED4_4. The Curtis-Pennington vertex is used to illustrate the technique and to facilitate comparison with previous calculations which used the alternative regularization schemes of modified ultraviolet cut-off and dimensional regularization. Our new results are in excellent numerical agreement with these, and so we can now conclude with confidence that there is no residual regularization dependence in these results. Moreover, from a computational point of view the regularization independent method has enormous advantages, since all integrals are absolutely convergent by construction, and so do not mix small and arbitrarily large momentum scales. We analytically predict power law behaviour in the asymptotic region, which is confirmed numerically with high precision. The successful demonstration of this efficient new technique opens the way for studies of unquenched QED to be undertaken in the near future.Comment: 20 pages,5 figure

    Mean field exponents and small quark masses

    Full text link
    We demonstrate that the restoration of chiral symmetry at finite-T in a class of confining Dyson-Schwinger equation (DSE) models of QCD is a mean field transition, and that an accurate determination of the critical exponents using the chiral and thermal susceptibilities requires very small values of the current-quark mass: log_{10}(m/m_u) < -5. Other classes of DSE models characterised by qualitatively different interactions also exhibit a mean field transition. Incipient in this observation is the suggestion that mean field exponents are a result of the gap equation's fermion substructure and not of the interaction.Comment: 13 pages, 3 figures, REVTEX, epsfi
    corecore