43 research outputs found

    Root exudates associated with the resistance of four chickpea cultivars (Cicer arietinum) to two races of Fusarium oxysporum f.sp. ciceris

    Get PDF
    The germination of race 1 spores of F. o. f.sp. ciceris was significantly inhibited by the root exudate of the wilt-resistant chickpea cultivars CPS1 and WR315 compared with untreated spores and spores treated with root exudates from susceptible cultivars. The effect was concn dependent, such that the exudate from 1 g of root in 2 ml of water almost completely inhibited spore germination, whereas the exudate from 1 g of root in 20 ml of water did not. The inhibitory effects of the active exudates were negated when the apolar components of the exudates were removed by extraction with ethyl acetate. The root exudates of the susceptible cv. JG62 and the late wilting cv. H208 did not inhibit germination. The hyphal growth of germinated spores was also strongly inhibited by the concentrated exudates of CPS1 and WR315, and diluted exudates were less potent. The highest concn of the exudate of the susceptible cv. JG62 showed some inhibition of hyphal growth, whereas none of the exudates of H208 contained any antifungal activity. The effect of the exudates on the spores of race 2 was similar to that reported for race 1, except that the water-soluble components of the crude root exudate of WR315 after ethyl acetate extraction also significantly inhibited germination. Overall, the spores of race 2 appeared to be more susceptible to the effects of the exudates. The ethyl acetate fractions of the root exudates of CPS1 and WR315 strongly inhibited germination and hyphal growth of both race 1 and race 2, the effect being concn dependent. It is concluded that the resistance of chickpeas to vascular wilt depends, at least in part, on antifungal activity of root exudates. Differences in the expression of resistance in the field could depend upon the concn or rate of production of constitutive antifungal components by the root

    Soilborne Diseases and their Control

    Get PDF
    Seed and seedling diseases, root rots, and wilts are caused by a number of soilborne fungi, all of which are facultative saprophytes and can survive in soil for long periods in the absence of a susceptible host. In general, these diseases are serious yield constraints where short rotations or monoculture of legume crops are the rule. Seedling diseases and root rots are enhanced by poor seed vigor, poor seedbed preparation, and other biotic and abiotic stresses which predispose the host plant. Control of these diseases requires an integrated approach of genetic resistance/tolerance, cultural practices, appropriate seed treatments, and high seed vigor. The most economical and durable control of Fusarium wilt is to grow resistant varieties. New races of a wilt pathogen have arisen due to increased selection pressure from growing resistant varieties in short rotations but have not outpaced the development of resistant cultivars

    Management of Soil-Borne Diseases of Grain Legumes Through Broad-Spectrum Actinomycetes Having Plant Growth-Promoting and Biocontrol Traits

    Get PDF
    Chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan L.) are the two important grain legumes grown extensively in the semiarid tropics (SAT) of the world, where soils are poor in nutrients and receive inadequate/erratic rainfall. SAT regions are commonly found in Africa, Australia, and South Asia. Chickpea and pigeonpea suffer from about 38 pathogens that cause soil-borne diseases including wilt, collar rot, dry root rot, damping off, stem canker, and Ascochyta/Phytophthora blight, and of which three of them, wilt, collar rot, and dry root rot, are important in SAT regions. Management of these soil-borne diseases are hard, as no one control measure is completely effective. Advanced/delayed sowing date, solarization of soil, and use of fungicides are some of the control measures usually employed for these diseases but with little success. The use of disease-resistant cultivar is the best efficient and economical control measure, but it is not available for most of the soil-borne diseases. Biocontrol of soil-borne plant pathogens has been managed using antagonistic actinobacteria, bacteria, and fungi. Actinobacterial strains of Streptomyces, Amycolatopsis, Micromonospora, Frankia, and Nocardia were reported to exert effective control on soil-borne pathogens and help the host plants to mobilize and acquire macro- and micronutrients. Such novel actinomycetes with wide range of plant growth-promoting (PGP) and antagonistic traits need to be exploited for sustainable agriculture. This chapter gives a comprehensive analysis of important soil-borne diseases of chickpea and pigeonpea and how broad-spectrum actinomycetes, particularly Streptomyces spp., could be exploited for managing them

    Chickpea

    Get PDF
    The narrow genetic base of cultivated chickpea warrants systematic collection, documentation and evaluation of chickpea germplasm and particularly wild Cicer species for effective and efficient use in chickpea breeding programmes. Limiting factors to crop production, possible solutions and ways to overcome them, importance of wild relatives and barriers to alien gene introgression and strategies to overcome them and traits for base broadening have been discussed. It has been clearly demonstrated that resistance to major biotic and abiotic stresses can be successfully introgressed from the primary gene pool comprising progenitor species. However, many desirable traits including high degree of resistance to multiple stresses that are present in the species belonging to secondary and tertiary gene pools can also be introgressed by using special techniques to overcome pre- and post-fertilization barriers. Besides resistance to various biotic and abiotic stresses, the yield QTLs have also been introgressed from wild Cicer species to cultivated varieties. Status and importance of molecular markers, genome mapping and genomic tools for chickpea improvement are elaborated. Because of major genes for various biotic and abiotic stresses, the transfer of agronomically important traits into elite cultivars has been made easy and practical through marker-assisted selection and marker-assisted backcross. The usefulness of molecular markers such as SSR and SNP for the construction of high-density genetic maps of chickpea and for the identification of genes/QTLs for stress resistance, quality and yield contributing traits has also been discussed
    corecore