262 research outputs found

    Optimized cross-slot flow geometry for microfluidic extension rheometry

    Get PDF
    A precision-machined cross-slot flow geometry with a shape that has been optimized by numerical simulation of the fluid kinematics is fabricated and used to measure the extensional viscosity of a dilute polymer solution. Full-field birefringence microscopy is used to monitor the evolution and growth of macromolecular anisotropy along the stagnation point streamline, and we observe the formation of a strong and uniform birefringent strand when the dimensionless flow strength exceeds a critical Weissenberg number Wicrit 0:5. Birefringence and bulk pressure drop measurements provide self consistent estimates of the planar extensional viscosity of the fluid over a wide range of deformation rates (26 s1 "_ 435 s1) and are also in close agreement with numerical simulations performed by using a finitely extensible nonlinear elastic dumbbell model

    Instabilities in stagnation point flows of polymer solutions

    Get PDF
    A recently developed microfluidic device, the optimized shape cross-slot extensional rheometer or OSCER [S. J. Haward, M. S. N. Oliveira, M. A. Alves, and G. H. McKinley, “Optimized cross-slot flow geometry for microfluidic extensional rheometry,” Phys. Rev. Lett.109, 128301 (Year: 2012)10.1103/PhysRevLett.109.128301], is used to investigate the stability of viscoelastic polymer solutions in an idealized planar stagnation point flow. Aqueous polymer solutions, consisting of poly(ethylene oxide) and of hyaluronic acid with various molecular weights and concentrations, are formulated in order to provide fluids with a wide range of rheological properties. Semi-dilute solutions of high molecular weight polymers provide highly viscoelastic fluids with long relaxation times, which achieve a high Weissenberg number (Wi) at flow rates for which the Reynolds number (Re) remains low; hence the elasticity number El = Wi/Re is high. Lower concentration solutions of moderate molecular weight polymers provide only weakly viscoelastic fluids in which inertia remains important and El is relatively low. Flow birefringence observations are used to visualize the nature of flow instabilities in the fluids as the volumetric flow rate through the OSCER device is steadily incremented. At low Wi and Re, all of the fluids display a steady, symmetric, and uniform “birefringent strand” of highly oriented polymer molecules aligned along the outflowing symmetry axis of the test geometry, indicating the stability of the flow field under such conditions. In fluids of El > 1, we observe steady elastic flow asymmetries beyond a critical Weissenberg number,Wi [subscript crit], that are similar in character to those already reported in standard cross-slot geometries [e.g., P. E. Arratia, C. C. Thomas, J. Diorio, and J. P. Gollub, “Elastic instabilities of polymer solutions in cross-channel flow,” Phys. Rev. Lett.96, 144502 (Year: 2006)10.1103/PhysRevLett.96.144502]. However, in fluids with El < 1 we observe a sequence of time-dependent inertio-elastic instabilities beyond a critical Reynolds number, Re[subscript crit], characterized by high frequency spatiotemporal oscillations of the birefringent strand. By plotting the critical limits of stability for the various fluids in the Wi-Re operating space, we are able to construct a stability diagram delineating the distinct steady symmetric, steady asymmetric and inertio-elastic flow regimes in this idealized planar elongational flow device.European Commission. Marie Curie Actions (FP7-PEOPLE-2011-IIF Grant 298220)United States. National Aeronautics and Space Administration (Microgravity Fluid Sciences (Code UG) Grant NNX09AV99G

    Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements

    Get PDF
    The crucifer Arabidopsis thaliana has been used widely as a model organism for the study of plant development. We describe here the development of an efficient insertional mutagenesis system in Arabidopsis that permits identification of genes by their patterns of expression during development. Transposable elements of the Ac/Ds system carrying the GUS reporter gene have been designed to act as enhancer traps or gene traps. A novel selection scheme maximizes recovery of unlinked transposition events. In this study 491 plants carrying independent transposon insertions were generated and screened for expression patterns. One-half of the enhancer trap insertions and one-quarter of the gene trap insertions displayed GUS expression in seedlings or flowers, including expression patterns specific to organs, tissues, cell types, or developmental stages. The patterns identify genes that act during organogenesis, pattern formation, or cell differentiation. Transposon insertion lines with specific GUS expression patterns provide valuable markers for studies of Arabidopsis development and identify new cell types or subtypes in plants. The diversity of gene expression patterns generated suggests that the identification and cloning of Arabidopsis genes expressed in any developmental process is feasible using this system

    Precautionary Regulation in Europe and the United States: A Quantitative Comparison

    Get PDF
    Much attention has been addressed to the question of whether Europe or the United States adopts a more precautionary stance to the regulation of potential environmental, health, and safety risks. Some commentators suggest that Europe is more risk-averse and precautionary, whereas the US is seen as more risk-taking and optimistic about the prospects for new technology. Others suggest that the US is more precautionary because its regulatory process is more legalistic and adversarial, while Europe is more lax and corporatist in its regulations. The flip-flop hypothesis claims that the US was more precautionary than Europe in the 1970s and early 1980s, and that Europe has become more precautionary since then. We examine the levels and trends in regulation of environmental, health, and safety risks since 1970. Unlike previous research, which has studied only a small set of prominent cases selected non-randomly, we develop a comprehensive list of almost 3,000 risks and code the relative stringency of regulation in Europe and the US for each of 100 risks randomly selected from that list for each year from 1970 through 2004. Our results suggest that: (a) averaging over risks, there is no significant difference in relative precaution over the period, (b) weakly consistent with the flip-flop hypothesis, there is some evidence of a modest shift toward greater relative precaution of European regulation since about 1990, although (c) there is a diversity of trends across risks, of which the most common is no change in relative precaution (including cases where Europe and the US are equally precautionary and where Europe or the US has been consistently more precautionary). The overall finding is of a mixed and diverse pattern of relative transatlantic precaution over the period

    Are Canadian Women Prepared for the Transition to Primary HPV Testing in Cervical Screening? A National Survey of Knowledge, Attitudes, and Beliefs

    Get PDF
    As Canadian provinces and territories prepare to transition to HPV-based primary screening for cervical cancer, failure to identify and address potential barriers to screening could hinder program implementation. We examined screening-eligible Canadians' attitudes towards and knowledge of cervical screening. A nationally representative sample of screening-eligible Canadians (N = 3724) completed a web-based survey in the summer of 2022. Oversampling ensured that half of the sample were underscreened for cervical cancer (>3 years since previous screening or never screened). The participants completed validated scales of cervical cancer, HPV, and HPV test knowledge and HPV test and self-sampling attitudes and beliefs. Between-group differences (underscreened vs. adequately screened) were calculated for scales and items using independent sample t-tests or chi-square tests. The underscreened participants (n = 1871) demonstrated significantly lower knowledge of cervical cancer, HPV, and the HPV test. The adequately screened participants (n = 1853) scored higher on the Confidence and Worries subscales of the HPV Test Attitudes and Beliefs Scale. The underscreened participants scored higher on the Personal Barriers and Social Norms subscales. The underscreened participants also endorsed greater Autonomy conferred by self-sampling. Our findings suggest important differential patterns of knowledge, attitudes, and beliefs between the underscreened and adequately screened Canadians. These findings highlight the need to develop targeted communication strategies and promote patient-centered, tailored approaches in cervical screening programs

    Microfluidic analog of an opposed-jets device

    Get PDF
    A fully three-dimensional (3D) stagnation point microfluidic device is fabricated that, similar to the classical opposed-jet apparatus, can be operated in either a uniaxial or a biaxial extensional flow mode with an easily controllable strain rate. The microchannel is etched inside fused silica and has optical access through all three planes. A detailed characterization of the Newtonian flow field by microparticle image velocimetry confirms the expected nature of the flow and compares well with the prediction of 3D numerical simulations. Flow-induced birefringence of a model polymer solution demonstrates the extension of macromolecules in both modes of operation and the potential use of the device for quantitative rheo-optical studies. This microfluidic opposed jet device could also be used for examining the deformation and dynamics of drops, cells, fibers, and single molecules in well-defined and relevant flow fields

    Extensional flow of hyaluronic acid solutions in an optimized micofluidic cross-slot device

    Get PDF
    We utilize a recently developed microfluidic device, the Optimized Shape Cross-slot Extensional Rheometer (OSCER), to study the elongational flow behavior and rheological properties of hyaluronic acid (HA) solutions representative of the synovial fluid (SF) found in the knee joint. The OSCER geometry is a stagnation point device that imposes a planar extensional flow with a homogenous extension rate over a significant length of the inlet and outlet channel axes. Due to the compressive nature of the flow generated along the inlet channels, and the planar elongational flow along the outlet channels, the flow field in the OSCER device can also be considered as representative of the flow field that arises between compressing articular cartilage layers of the knee joints during running or jumping movements. Full-field birefringence microscopy measurements demonstrate a high degree of localized macromolecular orientation along streamlines passing close to the stagnation point of the OSCER device, while micro-particle image velocimetry is used to quantify the flow kinematics. The stress-optical rule is used to assess the local extensional viscosity in the elongating fluid elements as a function of the measured deformation rate. The large limiting values of the dimensionless Trouton ratio, Tr ∼ O(50), demonstrate that these fluids are highly extensional-thickening, providing a clear mechanism for the load-dampening properties of SF. The results also indicate the potential for utilizing the OSCER in screening of physiological SF samples, which will lead to improved understanding of, and therapies for, disease progression in arthritis sufferers

    Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing

    Get PDF
    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time tt. Changes in the tensile stress, mode of failure and interfacial fracture energy GIG_I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small tt welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable craze is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy GIG_I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, GIG_I increases as t1/2t^{1/2} before saturating at the average bulk fracture energy GbG_b. As in previous simulations of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, GIG_I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and GIGbG_I \ll G_b

    The nonlinear time-dependent response of isotactic polypropylene

    Full text link
    Tensile creep tests, tensile relaxation tests and a tensile test with a constant rate of strain are performed on injection-molded isotactic polypropylene at room temperature in the vicinity of the yield point. A constitutive model is derived for the time-dependent behavior of semi-crystalline polymers. A polymer is treated as an equivalent network of chains bridged by permanent junctions. The network is modelled as an ensemble of passive meso-regions (with affine nodes) and active meso-domains (where junctions slip with respect to their positions in the bulk medium with various rates). The distribution of activation energies for sliding in active meso-regions is described by a random energy model. Adjustable parameters in the stress--strain relations are found by fitting experimental data. It is demonstrated that the concentration of active meso-domains monotonically grows with strain, whereas the average potential energy for sliding of junctions and the standard deviation of activation energies suffer substantial drops at the yield point. With reference to the concept of dual population of crystalline lamellae, these changes in material parameters are attributed to transition from breakage of subsidiary (thin) lamellae in the sub-yield region to fragmentation of primary (thick) lamellae in the post-yield region of deformation.Comment: 29 pages, 12 figure
    corecore