185 research outputs found

    Electron transport through quantum wires and point contacts

    Get PDF
    We have studied quantum wires using the Green's function technique and the density-functional theory, calculating the electronic structure and the conductance. All the numerics are implemented using the finite-element method with a high-order polynomial basis. For short wires, i.e. quantum point contacts, the zero-bias conductance shows, as a function of the gate voltage and at a finite temperature, a plateau at around 0.7G_0. (G_0 = 2e^2/h is the quantum conductance). The behavior, which is caused in our mean-field model by spontaneous spin polarization in the constriction, is reminiscent of the so-called 0.7-anomaly observed in experiments. In our model the temperature and the wire length affect the conductance-gate voltage curves in the same way as in the measured data.Comment: 8 page

    Electonic transport properties of nitrate-doped carbon nanotube networks

    Full text link
    The conductivity of carbon nanotube (CNT) networks can be improved markedly by doping with nitric acid. In the present work, CNTs and junctions of CNTs functionalized with NO3_3 molecules are investigated to understand the microscopic mechanism of nitric acid doping. According to our density functional theory band structure calculations, there is charge transfer from the CNT to adsorbed molecules indicating p-type doping. The average doping efficiency of the NO3_3 molecules is higher if the NO3_3 molecules form complexes with water molecules. In addition to electron transport along individual CNTs, we have also studied electron transport between different types (metallic, semiconducting) of CNTs. Reflecting the differences in the electronic structures of semiconducting and metallic CNTs, we have found that besides turning semiconducting CNTs metallic, doping further increases electron transport most efficiently along semiconducting CNTs as well as through a junction between them.Comment: 13 pages, 12 figure

    Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption

    Get PDF
    The conductivity of carbon nanotube thin films is mainly determined by carbon nanotube junctions, the resistance of which can be reduced by several different methods. We investigate electronic transport through carbon nanotube junctions in a four-terminal configuration, where two metallic single-wall carbon nanotubes are linked by a group 6 transition metal atom. The transport calculations are based on the Green’s function method combined with the density-functional theory. The transition metal atom is found to enhance the transport through the junction near the Fermi level. However, the size of the nanotube affects the improvement in the conductivity. The enhancement is related to the hybridization of chromium and carbon atom orbitals, which is clearly reflected in the character of eigenstates near the Fermi level. The effects of chromium atoms and precursor molecules remaining adsorbed on the nanotubes outside the junctions are also examined.Peer reviewe

    Finite-element implementation for electron transport in nanostructures

    Get PDF
    We have modeled transport properties of nanostructures using Green’s-function method within the framework of the density-functional theory. The scheme is computationally demanding, so numerical methods have to be chosen carefully. A typical solution to the numerical burden is to use a special basis-function set, which is tailored to the problem in question, for example, the atomic-orbital basis. In this paper we present our solution to the problem. We have used the finite-element method with a hierarchical high-order polynomial basis, the so-called p elements. This method allows the discretation error to be controlled in a systematic way. The p elements work so efficiently that they can be used to solve interesting nanosystems described by nonlocal pseudopotentials. We demonstrate the potential of the implementation with two different systems. As a test system a simple Na-atom chain between two leads is modeled and the results are compared with several previous calculations. Secondly, we consider a thin hafnium dioxide (HfO2) layer on a silicon surface as a model for a gate structure of the next generation of microelectronics.Peer reviewe

    Non-Equilibrium Electron Transport in Two-Dimensional Nano-Structures Modeled by Green's Functions and the Finite-Element Method

    Get PDF
    We use the effective-mass approximation and the density-functional theory with the local-density approximation for modeling two-dimensional nano-structures connected phase-coherently to two infinite leads. Using the non-equilibrium Green's function method the electron density and the current are calculated under a bias voltage. The problem of solving for the Green's functions numerically is formulated using the finite-element method (FEM). The Green's functions have non-reflecting open boundary conditions to take care of the infinite size of the system. We show how these boundary conditions are formulated in the FEM. The scheme is tested by calculating transmission probabilities for simple model potentials. The potential of the scheme is demonstrated by determining non-linear current-voltage behaviors of resonant tunneling structures.Comment: 13 pages,15 figure

    The structural distortion in antiferromagnetic LaFeAsO investigated by a group-theoretical approach

    Full text link
    As experimentally well established, undoped LaFeAsO is antiferromagnetic below 137K with the magnetic moments lying on the Fe sites. We determine the orthorhombic body-centered group Imma (74) as the space group of the experimentally observed magnetic structure in the undistorted lattice, i.e., in a lattice possessing no structural distortions in addition to the magnetostriction. We show that LaFeAsO possesses a partly filled "magnetic band" with Bloch functions that can be unitarily transformed into optimally localized Wannier functions adapted to the space group Imma. This finding is interpreted in the framework of a nonadiabatic extension of the Heisenberg model of magnetism, the nonadiabatic Heisenberg model. Within this model, however, the magnetic structure with the space group Imma is not stable but can be stabilized by a (slight) distortion of the crystal turning the space group Imma into the space group Pnn2 (34). This group-theoretical result is in accordance with the experimentally observed displacements of the Fe and O atoms in LaFeAsO as reported by Clarina de la Cruz et al. [nature 453, 899 (2008)]

    Effect of Alkali Metal Atom Doping on the CuInSe2-Based Solar Cell Absorber

    Get PDF
    The efficiency of Cu(In,Ga)Se_2 (CIGS)-based solar cells can bemarkedly improved by controlled introduction of alkali metal (AM) atomsusing post-deposition treatment (PDT) after CIGS growth. Previous studieshave indicated that AM atoms may act as impurities or agglomerate intosecondary phases. To enable further progress, understanding of atomic levelprocesses responsible for these improvements is required. To this end, we haveinvestigated theoretically the effects of the AM elements Li, Na, K, Rb, and Cson the properties of the parent material CuInSe_2 . First, the effects of the AMimpurities in CuInSe_2 have been investigated in terms of formation energies,charge transition levels, and migration energy barriers. We found that AM atoms preferentially substitute for Cu atoms at theneutral charge state. Under In-poor conditions, AM atoms at the In site also show low formation energies and are acceptors. Themigration energy barriers show that the interstitial diffusion mechanism may be relevant only for Li, Na, and K, whereas all theAM atoms can diffuse with the help of Cu vacancies. The competition between these two mechanisms strongly depends on theconcentration of Cu vacancies. We also discuss how AM atoms can contribute to increasing Cu-depleted regions. Second, AMatoms can form secondary phases with Se and In atoms. We suggest a mechanism for the secondary phase formation followingthe PDT process. On the basis of the calculated reaction enthalpies and migration considerations, we find that mixed phases aremore likely in the case of LiInSe_2 and NaInSe_2 , whereas formation of secondary phases is expected for KInSe_2 , RbInSe_2 , andCsInSe_2 . We discuss our findings in the light of experimental results obtained for AM treatments. The secondary phases havelarge energy band gaps and improve the morphology of the buffer surface by enabling a favorable band alignment, which canimprove the electrical properties of the device. Moreover, they can also passivate the surface by forming a diffusion barrier.Overall, our work points to different roles played by the light and heavy AM atoms and suggests that both types may be neededto maximize their benefits on the solar cell performance.Peer reviewe

    The reason why doping causes superconductivity in LaFeAsO

    Full text link
    The experimental observation of superconductivity in LaFeAsO appearing on doping is analyzed with the group-theoretical approach that evidently led in a foregoing paper (J. Supercond 24:2103, 2011) to an understanding of the cause of both the antiferromagnetic state and the accompanying structural distortion in this material. Doping, like the structural distortions, means also a reduction of the symmetry of the pure perfect crystal. In the present paper we show that this reduction modifies the correlated motion of the electrons in a special narrow half-filled band of LaFeAsO in such a way that these electrons produce a stable superconducting state
    corecore