326 research outputs found

    Projective Ring Line of an Arbitrary Single Qudit

    Full text link
    As a continuation of our previous work (arXiv:0708.4333) an algebraic geometrical study of a single dd-dimensional qudit is made, with dd being {\it any} positive integer. The study is based on an intricate relation between the symplectic module of the generalized Pauli group of the qudit and the fine structure of the projective line over the (modular) ring \bZ_{d}. Explicit formulae are given for both the number of generalized Pauli operators commuting with a given one and the number of points of the projective line containing the corresponding vector of \bZ^{2}_{d}. We find, remarkably, that a perp-set is not a set-theoretic union of the corresponding points of the associated projective line unless dd is a product of distinct primes. The operators are also seen to be structured into disjoint `layers' according to the degree of their representing vectors. A brief comparison with some multiple-qudit cases is made

    Say Goodbye to Hollywood: The Performance Discrepancy of Franchise Films between the Domestic and Foreign Box Office

    Get PDF
    The increasing globalization of entertainment appears to be having a major impact on the dynamics of the American film industry. The U.S. box office is no longer predominant, meaning that in order to most effectively capitalize on the state of the theatrical market, domestic studios must now more heavily incorporate foreign preferences into production strategy. This study explores the financial nuances of the global box office in relation to sequel-driven film franchises, which have seemingly come to dominate commercial filmmaking as a result of their risk-minimized profitability. We focus on discrepancies between foreign and domestic performance in order to analyze the potential motivations behind the shifts in Hollywood’s output. Using OLS and Probit regression models with a variety of dependent and independent variables, this study finds that sequels tend to perform both relatively and absolutely better overseas, that certain genres are received differently abroad than in the U.S., and that the approval of latter sequels tends to be driven more by foreign revenue generated by previous films within franchises

    Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function ?

    Full text link
    We study the commutation relations within the Pauli groups built on all decompositions of a given Hilbert space dimension qq, containing a square, into its factors. Illustrative low dimensional examples are the quartit (q=4q=4) and two-qubit (q=22q=2^2) systems, the octit (q=8q=8), qubit/quartit (q=2×4q=2\times 4) and three-qubit (q=23q=2^3) systems, and so on. In the single qudit case, e.g. q=4,8,12,...q=4,8,12,..., one defines a bijection between the σ(q)\sigma (q) maximal commuting sets [with σ[q)\sigma[q) the sum of divisors of qq] of Pauli observables and the maximal submodules of the modular ring Zq2\mathbb{Z}_q^2, that arrange into the projective line P1(Zq)P_1(\mathbb{Z}_q) and a independent set of size σ(q)ψ(q)\sigma (q)-\psi(q) [with ψ(q)\psi(q) the Dedekind psi function]. In the multiple qudit case, e.g. q=22,23,32,...q=2^2, 2^3, 3^2,..., the Pauli graphs rely on symplectic polar spaces such as the generalized quadrangles GQ(2,2) (if q=22q=2^2) and GQ(3,3) (if q=32q=3^2). More precisely, in dimension pnp^n (pp a prime) of the Hilbert space, the observables of the Pauli group (modulo the center) are seen as the elements of the 2n2n-dimensional vector space over the field Fp\mathbb{F}_p. In this space, one makes use of the commutator to define a symplectic polar space W2n1(p)W_{2n-1}(p) of cardinality σ(p2n1)\sigma(p^{2n-1}), that encodes the maximal commuting sets of the Pauli group by its totally isotropic subspaces. Building blocks of W2n1(p)W_{2n-1}(p) are punctured polar spaces (i.e. a observable and all maximum cliques passing to it are removed) of size given by the Dedekind psi function ψ(p2n1)\psi(p^{2n-1}). For multiple qudit mixtures (e.g. qubit/quartit, qubit/octit and so on), one finds multiple copies of polar spaces, ponctured polar spaces, hypercube geometries and other intricate structures. Such structures play a role in the science of quantum information.Comment: 18 pages, version submiited to J. Phys. A: Math. Theo

    On the Veldkamp Space of GQ(4, 2)

    Full text link
    The Veldkamp space, in the sense of Buekenhout and Cohen, of the generalized quadrangle GQ(4, 2) is shown not to be a (partial) linear space by simply giving several examples of Veldkamp lines (V-lines) having two or even three Veldkamp points (V-points) in common. Alongside the ordinary V-lines of size five, one also finds V-lines of cardinality three and two. There, however, exists a subspace of the Veldkamp space isomorphic to PG(3, 4) having 45 perps and 40 plane ovoids as its 85 V-points, with its 357 V-lines being of four distinct types. A V-line of the first type consists of five perps on a common line (altogether 27 of them), the second type features three perps and two ovoids sharing a tricentric triad (240 members), whilst the third and fourth type each comprises a perp and four ovoids in the rosette centered at the (common) center of the perp (90). It is also pointed out that 160 non-plane ovoids (tripods) fall into two distinct orbits -- of sizes 40 and 120 -- with respect to the stabilizer group of a copy of GQ(2, 2); a tripod of the first/second orbit sharing with the GQ(2, 2) a tricentric/unicentric triad, respectively. Finally, three remarkable subconfigurations of V-lines represented by fans of ovoids through a fixed ovoid are examined in some detail.Comment: 6 pages, 7 figures; v2 - slightly polished, subsection on fans of ovoids and three figures adde

    Qudits of composite dimension, mutually unbiased bases and projective ring geometry

    Full text link
    The d2d^2 Pauli operators attached to a composite qudit in dimension dd may be mapped to the vectors of the symplectic module Zd2\mathcal{Z}_d^{2} (Zd\mathcal{Z}_d the modular ring). As a result, perpendicular vectors correspond to commuting operators, a free cyclic submodule to a maximal commuting set, and disjoint such sets to mutually unbiased bases. For dimensions d=6, 10, 15, 12d=6,~10,~15,~12, and 18, the fine structure and the incidence between maximal commuting sets is found to reproduce the projective line over the rings Z6\mathcal{Z}_{6}, Z10\mathcal{Z}_{10}, Z15\mathcal{Z}_{15}, Z6×F4\mathcal{Z}_6 \times \mathbf{F}_4 and Z6×Z3\mathcal{Z}_6 \times \mathcal{Z}_3, respectively.Comment: 10 pages (Fast Track communication). Journal of Physics A Mathematical and Theoretical (2008) accepte

    Finite Projective Spaces, Geometric Spreads of Lines and Multi-Qubits

    Full text link
    Given a (2N - 1)-dimensional projective space over GF(2), PG(2N - 1, 2), and its geometric spread of lines, there exists a remarkable mapping of this space onto PG(N - 1, 4) where the lines of the spread correspond to the points and subspaces spanned by pairs of lines to the lines of PG(N - 1, 4). Under such mapping, a non-degenerate quadric surface of the former space has for its image a non-singular Hermitian variety in the latter space, this quadric being {\it hyperbolic} or {\it elliptic} in dependence on N being {\it even} or {\it odd}, respectively. We employ this property to show that generalized Pauli groups of N-qubits also form two distinct families according to the parity of N and to put the role of symmetric operators into a new perspective. The N=4 case is taken to illustrate the issue.Comment: 3 pages, no figures/tables; V2 - short introductory paragraph added; V3 - to appear in Int. J. Mod. Phys.

    Mermin's Pentagram as an Ovoid of PG(3,2)

    Full text link
    Mermin's pentagram, a specific set of ten three-qubit observables arranged in quadruples of pairwise commuting ones into five edges of a pentagram and used to provide a very simple proof of the Kochen-Specker theorem, is shown to be isomorphic to an ovoid (elliptic quadric) of the three-dimensional projective space of order two, PG(3,2). This demonstration employs properties of the real three-qubit Pauli group embodied in the geometry of the symplectic polar space W(5,2) and rests on the facts that: 1) the four observables/operators on any of the five edges of the pentagram can be viewed as points of an affine plane of order two, 2) all the ten observables lie on a hyperbolic quadric of the five-dimensional projective space of order two, PG(5,2), and 3) that the points of this quadric are in a well-known bijective correspondence with the lines of PG(3,2).Comment: 5 pages, 4 figure

    A variant of Peres-Mermin proof for testing noncontextual realist models

    Full text link
    For any state in four-dimensional system, the quantum violation of an inequality based on the Peres-Mermin proof for testing noncontextual realist models has experimentally been corroborated. In the Peres-Mermin proof, an array of nine holistic observables for two two-qubit system was used. We, in this letter, present a new symmetric set of observables for the same system which also provides a contradiction of quantum mechanics with noncontextual realist models in a state-independent way. The whole argument can also be cast in the form of a new inequality that can be empirically tested.Comment: 3 pages, To be published in Euro. Phys. Let

    Projective Ring Line of a Specific Qudit

    Full text link
    A very particular connection between the commutation relations of the elements of the generalized Pauli group of a dd-dimensional qudit, dd being a product of distinct primes, and the structure of the projective line over the (modular) ring \bZ_{d} is established, where the integer exponents of the generating shift (XX) and clock (ZZ) operators are associated with submodules of \bZ^{2}_{d}. Under this correspondence, the set of operators commuting with a given one -- a perp-set -- represents a \bZ_{d}-submodule of \bZ^{2}_{d}. A crucial novel feature here is that the operators are also represented by {\it non}-admissible pairs of \bZ^{2}_{d}. This additional degree of freedom makes it possible to view any perp-set as a {\it set-theoretic} union of the corresponding points of the associated projective line
    corecore