449 research outputs found

    Flexible Sensor Network Reprogramming for Logistics

    Get PDF
    Besides the currently realized applications, Wireless Sensor Networks can be put to use in logistics processes. However, doing so requires a level of flexibility and safety not provided by the current WSN software platforms. This paper discusses a logistics scenario, and presents SensorScheme, a runtime environment used to realize this scenario, based on semantics of the Scheme programming language. SensorScheme is a general purpose WSN platform, providing dynamic reprogramming, memory safety (sandboxing), blocking I/O, marshalled communication, compact code transport. It improves on the state of the art by making better use of the little available memory, thereby providing greater capability in terms of program size and complexity. We illustrate the use of our platform with some application examples, and provide experimental results to show its compactness, speed of operation and energy efficiency

    Oorzaken wateroverlast op een kavel in de ruilverkaveling "Dwingeloo-Smalbroek"

    Get PDF

    Resultaten van het diepploegproefveld Geestmerambacht

    Get PDF

    Snapshots of the EYES project

    Get PDF
    The EYES project (IST-2001-34734) is a three years European research project on self-organizing and collaborative energy-efficient sensor networks. It addresses the convergence of distributed information processing, wireless communications, and mobile computing. The goal of the project is to develop the architecture and the technology which enables the creation of a new generation of sensors that can effectively network together so as to provide a flexible platform for the support of a large variety of mobile sensor network applications. This paper provides a broad overview of the EYES project and highlights some approaches and results of the architecture

    A survey on the feasibility of sound classification on wireless sensor nodes

    Get PDF
    Wireless sensor networks are suitable to gain context awareness for indoor environments. As sound waves form a rich source of context information, equipping the nodes with microphones can be of great benefit. The algorithms to extract features from sound waves are often highly computationally intensive. This can be problematic as wireless nodes are usually restricted in resources. In order to be able to make a proper decision about which features to use, we survey how sound is used in the literature for global sound classification, age and gender classification, emotion recognition, person verification and identification and indoor and outdoor environmental sound classification. The results of the surveyed algorithms are compared with respect to accuracy and computational load. The accuracies are taken from the surveyed papers; the computational loads are determined by benchmarking the algorithms on an actual sensor node. We conclude that for indoor context awareness, the low-cost algorithms for feature extraction perform equally well as the more computationally-intensive variants. As the feature extraction still requires a large amount of processing time, we present four possible strategies to deal with this problem

    On the design of an energy-efficient low-latency integrated protocol for distributed mobile sensor networks

    Get PDF
    Self organizing, wireless sensors networks are an emergent and challenging technology that is attracting large attention in the sensing and monitoring community. Impressive progress has been done in recent years even if we need to assume that an optimal protocol for every kind of sensor network applications can not exist. As a result it is necessary to optimize the protocol for certain scenarios. In many applications for instance latency is a crucial factor in addition to energy consumption. MERLIN performs its best in such WSNs where there is the need to reduce the latency while ensuring that energy consumption is kept to a minimum. By means of that, the low latency characteristic of MERLIN can be used as a trade off to extend node lifetimes. The performance in terms of energy consumption and latency is optimized by acting on the slot length. MERLIN is designed specifically to integrate routing, MAC and localization protocols together. Furthermore it can support data queries which is a typical application for WSNs. The MERLIN protocol eliminates the necessity to have any explicit handshake mechanism among nodes. Furthermore, the reliability is improved using multiple path message propagation in combination with an overhearing mechanism. The protocol divides the network into subsets where nodes are grouped in time zones. As a result MERLIN also shows a good scalability by utilizing an appropriate scheduling mechanism in combination with a contention period
    • …
    corecore