2 research outputs found
Neutron Measurements at the Lunar Surface (NMLS)
The Neutron Measurement System (NMS-Lunar) is an instrument payload manifested on Astrobotics Peregrine Mission One (M1). Astrobotic Mission One will land at Lacus Mortis (~44oN, 254oE). Astrobotic will fly up to fourteen NASA payloads to the lunar surface in addition to other payload customers on M1. NMS-Lunar is a re-design of the MSFC Fast Neutron Spectrometer (FNS) currently operating on the ISS. The design of NMS-Lunar enables operation on the lunar surface, integration onto the Peregrine lander, and measurement of thermal neutron count rates on the lunar surface. The primary science objectives for NMS-Lunar is to provide ground truth of mapped neutron data from the Lunar Reconnaissance Orbiter and Lunar Prospector missions. Neutrons are created when galactic cosmic rays interact with the lunar regolith, and can provide valuable elemental composition information
The Importance of Nightside Magnetometer Observations for Electromagnetic Sounding of the Moon
Understanding the structure and composition of the lunar interior is a fundamental goal in furthering our knowledge of the formation and subsequent evolution of the Earth-Moon system. Among various methods, electromagnetic sounding is a valuable approach to constraining lunar interior structure. Recent analyses of plasma and field observations provide a wealth of understanding about the dynamics of the lunar plasma environment. To perform Time Domain EM (TDEM) Sounding at the Moon, the first step is to characterize the dynamic plasma environment, and to be able to isolate geophysically induced currents from concurrently present plasma currents. The TDEM Sounding transfer function method focuses on analysis of the nightside observations when the Moon is immersed in the solar wind. This method requires two simultaneous observations: an upstream reference measuring the pristine solar wind, and one downstream at or near the lunar surface. This method was last performed during Apollo and assumed the induced fields on the nightside of the Moon expand as in an undisturbed vacuum within the wake cavity. Our results indicate that EM sounding of airless bodies in the solar wind must be interpreted via self-consistent plasma models in order to untangle plasma and induced field contributions, with implications not only at the Moon but at all airless bodies exposed to the solar wind. Nightside TDEM sounding has the capability to advance the state of knowledge of the field of lunar science. This requires magnetometer operations to withstand the harsh conditions of the lunar night