17 research outputs found

    No acute tetrahedron is an 8-reptile

    Get PDF
    An rr-gentiling is a dissection of a shape into r≥2r \geq 2 parts which are all similar to the original shape. An rr-reptiling is an rr-gentiling of which all parts are mutually congruent. This article shows that no acute tetrahedron is an rr-gentile or rr-reptile for any r <9, by showing that no acute spherical diangle can be dissected into less than nine acute spherical triangles

    Sixteen space-filling curves and traversals for d-dimensional cubes and simplices

    No full text
    This article describes sixteen different ways to traverse d-dimensional space recursively in a way that is well-defined for any number of dimensions. Each of these traversals has distinct properties that may be beneficial for certain applications. Some of the traversals are novel, some have been known in principle but had not been described adequately for any number of dimensions, some of the traversals have been known. This article is the first to present them all in a consistent notation system. Furthermore, with this article, tools are provided to enumerate points in a regular grid in the order in which they are visited by each traversal. In particular, we cover: five discontinuous traversals based on subdividing cubes into 2^d subcubes: Z-traversal (Morton indexing), U-traversal, Gray-code traversal, Double-Gray-code traversal, and Inside-out traversal; two discontinuous traversals based on subdividing simplices into 2^d subsimplices: the Hill-Z traversal and the Maehara-reflected traversal; five continuous traversals based on subdividing cubes into 2^d subcubes: the Base-camp Hilbert curve, the Harmonious Hilbert curve, the Alfa Hilbert curve, the Beta Hilbert curve, and the Butz-Hilbert curve; four continuous traversals based on subdividing cubes into 3^d subcubes: the Peano curve, the Coil curve, the Half-coil curve, and the Meurthe curve. All of these traversals are self-similar in the sense that the traversal in each of the subcubes or subsimplices of a cube or simplex, on any level of recursive subdivision, can be obtained by scaling, translating, rotating, reflecting and/or reversing the traversal of the complete unit cube or simplex

    An inventory of three-dimensional Hilbert space-filling curves

    No full text
    Hilbert's two-dimensional space-filling curve is appreciated for its good locality properties for many applications. However, it is not clear what is the best way to generalize this curve to filling higher-dimensional spaces. We argue that the properties that make Hilbert's curve unique in two dimensions, are shared by 10694807 structurally different space-filling curves in three dimensions. These include several curves that have, in some sense, better locality properties than any generalized Hilbert curve that has been considered in the literature before

    The sound of space-filling curves

    No full text
    This paper presents an approach for representing space-filling curves by sound, aiming to add a new way of perceiving their beautiful properties. In contrast to previous approaches, the representation is such that geometric similarity transformations between parts of the curve carry over to auditory similarity transformations between parts of the sound track. This allows us to sonify space-filling curves, in some cases in up to at least five dimensions, in such a way that some of their geometric properties can be heard. The results direct attention to the question whether space-filling curves exhibit a structure that is similar to music. I show how previous findings on the power spectrum of pitch fluctuations in music suggest that the answer depends on the number of dimensions of the space-filling curve

    How many three-dimensional Hilbert curves are there?

    No full text
    Hilbert's two-dimensional space-filling curve is appreciated for its good locality-preserving properties and easy implementation for many applications. However, Hilbert did not describe how to generalize his construction to higher dimensions. In fact, the number of ways in which this may be done ranges from zero to infinite, depending on what properties of the Hilbert curve one considers to be essential.\u3cbr/\u3e\u3cbr/\u3eIn this work we take the point of view that a Hilbert curve should at least be self-similar and traverse cubes octant by octant. We organize and explore the space of possible three-dimensional Hilbert curves and the potentially useful properties which they may have. We discuss a notation system that allows us to distinguish the curves from one another and enumerate them. This system has been implemented in a software prototype, available from the author's website.\u3cbr/\u3e\u3cbr/\u3eSeveral examples of possible three-dimensional Hilbert curves are presented, including a curve that visits the points on most sides of the unit cube in the order of the two-dimensional Hilbert curve; curves of which not only the eight octants are similar to each other, but also the four quarters; a curve with excellent locality-preserving properties and endpoints that are not vertices of the cube; a curve in which all but two octants are each other's images with respect to reflections in axis-parallel planes; and curves that can be sketched on a grid without using vertical line segments. In addition, we discuss several four-dimensional Hilbert curves.\u3cbr/\u3

    The sound of space-filling curves

    No full text

    How many three-dimensional Hilbert curves are there

    No full text
    Hilbert's two-dimensional space-filling curve is appreciated for its good locality-preserving properties and easy implementation for many applications. However, Hilbert did not describe how to generalize his construction to higher dimensions. In fact, the number of ways in which this may be done ranges from zero to infinite, depending on what properties of the Hilbert curve one considers to be essential. \u3cbr/\u3eIn this work we take the point of view that a Hilbert curve should at least be self-similar and traverse cubes octant by octant. We organize and explore the space of possible three-dimensional Hilbert curves and the potentially useful properties which they may have. We discuss a notation system that allows us to distinguish the curves from one another and enumerate them. This system has been implemented in a software prototype, available from the author's website. Several examples of possible three-dimensional Hilbert curves are presented, including a curve that visits the points on most sides of the unit cube in the order of the two-dimensional Hilbert curve; curves of which not only the eight octants are similar to each other, but also the four quarters; a curve with excellent locality-preserving properties and endpoints that are not vertices of the cube; a curve in which all but two octants are each other's images with respect to reflections in axis-parallel planes; and curves that can be sketched on a grid without using vertical line segments. In addition, we discuss several four-dimensional Hilbert curves

    Quadtrees and Morton indexing

    No full text

    Hyperorthogonal well-folded Hilbert curves

    No full text
    R-trees can be used to store and query sets of point data in two or more dimensions. An easy way to construct and maintain R-trees for two-dimensional points, due to Kamel and Faloutsos, is to keep the points in the order in which they appear along the Hilbert curve. The R-tree will then store bounding boxes of points along contiguous sections of the curve, and the efficiency of the R-tree depends on the size of the bounding boxes---smaller is better. Since there are many different ways to generalize the Hilbert curve to higher dimensions, this raises the question which generalization results in the smallest bounding boxes. Familiar methods, such as the one by Butz, can result in curve sections whose bounding boxes are a factor Ω(2 d/2 ) \u3cbr/\u3eΩ(2d/2)\u3cbr/\u3e larger than the volume traversed by that section of the curve. Most of the volume bounded by such bounding boxes would not contain any data points. In this paper we present a new way of generalizing Hilbert's curve to higher dimensions, which results in much tighter bounding boxes: they have at most 4 times the volume of the part of the curve covered, independent of the number of dimensions. Moreover, we prove that a factor 4 is asymptotically optimal

    Reptilings and space-filling curves for acute triangles

    No full text
    \u3cp\u3eAn r-gentiling is a dissection of a shape into r≥ 2 parts that are all similar to the original shape. An r-reptiling is an r-gentiling of which all parts are mutually congruent. By applying gentilings recursively, together with a rule that defines an order on the parts, one may obtain an order in which to traverse all points within the original shape. We say such a traversal is a face-continuous space-filling curve if, at any level of recursion, the interior of the union of any set of consecutive parts is connected—that is, with two-dimensional shapes, consecutive parts must always meet along an edge. Most famously, the isosceles right triangle admits a 2-reptiling, which can be used to describe the face-continuous Sierpiński/Pólya space-filling curve; many other right triangles admit reptilings and gentilings that yield face-continuous space-filling curves as well. In this study we investigate which acute triangles admit non-trivial reptilings and gentilings, and whether these can form the basis for face-continuous space-filling curves. We derive several properties of reptilings and gentilings of acute (sometimes also obtuse) triangles, leading to the following conclusion: no face-continuous space-filling curve can be constructed on the basis of reptilings of acute triangles.\u3c/p\u3
    corecore