361 research outputs found

    Deep Neural Network with l2-norm Unit for Brain Lesions Detection

    Full text link
    Automated brain lesions detection is an important and very challenging clinical diagnostic task because the lesions have different sizes, shapes, contrasts, and locations. Deep Learning recently has shown promising progress in many application fields, which motivates us to apply this technology for such important problem. In this paper, we propose a novel and end-to-end trainable approach for brain lesions classification and detection by using deep Convolutional Neural Network (CNN). In order to investigate the applicability, we applied our approach on several brain diseases including high and low-grade glioma tumor, ischemic stroke, Alzheimer diseases, by which the brain Magnetic Resonance Images (MRI) have been applied as an input for the analysis. We proposed a new operating unit which receives features from several projections of a subset units of the bottom layer and computes a normalized l2-norm for next layer. We evaluated the proposed approach on two different CNN architectures and number of popular benchmark datasets. The experimental results demonstrate the superior ability of the proposed approach.Comment: Accepted for presentation in ICONIP-201

    Hypothesis Disparity Regularized Mutual Information Maximization

    Full text link
    We propose a hypothesis disparity regularized mutual information maximization~(HDMI) approach to tackle unsupervised hypothesis transfer -- as an effort towards unifying hypothesis transfer learning (HTL) and unsupervised domain adaptation (UDA) -- where the knowledge from a source domain is transferred solely through hypotheses and adapted to the target domain in an unsupervised manner. In contrast to the prevalent HTL and UDA approaches that typically use a single hypothesis, HDMI employs multiple hypotheses to leverage the underlying distributions of the source and target hypotheses. To better utilize the crucial relationship among different hypotheses -- as opposed to unconstrained optimization of each hypothesis independently -- while adapting to the unlabeled target domain through mutual information maximization, HDMI incorporates a hypothesis disparity regularization that coordinates the target hypotheses jointly learn better target representations while preserving more transferable source knowledge with better-calibrated prediction uncertainty. HDMI achieves state-of-the-art adaptation performance on benchmark datasets for UDA in the context of HTL, without the need to access the source data during the adaptation.Comment: Accepted to AAAI 202

    Adversarial training and dilated convolutions for brain MRI segmentation

    Full text link
    Convolutional neural networks (CNNs) have been applied to various automatic image segmentation tasks in medical image analysis, including brain MRI segmentation. Generative adversarial networks have recently gained popularity because of their power in generating images that are difficult to distinguish from real images. In this study we use an adversarial training approach to improve CNN-based brain MRI segmentation. To this end, we include an additional loss function that motivates the network to generate segmentations that are difficult to distinguish from manual segmentations. During training, this loss function is optimised together with the conventional average per-voxel cross entropy loss. The results show improved segmentation performance using this adversarial training procedure for segmentation of two different sets of images and using two different network architectures, both visually and in terms of Dice coefficients.Comment: MICCAI 2017 Workshop on Deep Learning in Medical Image Analysi

    Dilated Convolutional Neural Networks for Cardiovascular MR Segmentation in Congenital Heart Disease

    Full text link
    We propose an automatic method using dilated convolutional neural networks (CNNs) for segmentation of the myocardium and blood pool in cardiovascular MR (CMR) of patients with congenital heart disease (CHD). Ten training and ten test CMR scans cropped to an ROI around the heart were provided in the MICCAI 2016 HVSMR challenge. A dilated CNN with a receptive field of 131x131 voxels was trained for myocardium and blood pool segmentation in axial, sagittal and coronal image slices. Performance was evaluated within the HVSMR challenge. Automatic segmentation of the test scans resulted in Dice indices of 0.80±\pm0.06 and 0.93±\pm0.02, average distances to boundaries of 0.96±\pm0.31 and 0.89±\pm0.24 mm, and Hausdorff distances of 6.13±\pm3.76 and 7.07±\pm3.01 mm for the myocardium and blood pool, respectively. Segmentation took 41.5±\pm14.7 s per scan. In conclusion, dilated CNNs trained on a small set of CMR images of CHD patients showing large anatomical variability provide accurate myocardium and blood pool segmentations

    Conditional Generation of Medical Images via Disentangled Adversarial Inference

    Full text link
    Synthetic medical image generation has a huge potential for improving healthcare through many applications, from data augmentation for training machine learning systems to preserving patient privacy. Conditional Adversarial Generative Networks (cGANs) use a conditioning factor to generate images and have shown great success in recent years. Intuitively, the information in an image can be divided into two parts: 1) content which is presented through the conditioning vector and 2) style which is the undiscovered information missing from the conditioning vector. Current practices in using cGANs for medical image generation, only use a single variable for image generation (i.e., content) and therefore, do not provide much flexibility nor control over the generated image. In this work we propose a methodology to learn from the image itself, disentangled representations of style and content, and use this information to impose control over the generation process. In this framework, style is learned in a fully unsupervised manner, while content is learned through both supervised learning (using the conditioning vector) and unsupervised learning (with the inference mechanism). We undergo two novel regularization steps to ensure content-style disentanglement. First, we minimize the shared information between content and style by introducing a novel application of the gradient reverse layer (GRL); second, we introduce a self-supervised regularization method to further separate information in the content and style variables. We show that in general, two latent variable models achieve better performance and give more control over the generated image. We also show that our proposed model (DRAI) achieves the best disentanglement score and has the best overall performance.Comment: Published in Medical Image Analysi
    • …
    corecore