6 research outputs found
Manifold-Topology from K-Causal Order
To a significant extent, the metrical and topological properties of spacetime
can be described purely order-theoretically. The relation has proven to
be useful for this purpose, and one could wonder whether it could serve as the
primary causal order from which everything else would follow. In that
direction, we prove, by defining a suitable order-theoretic boundary of
, that in a -causal spacetime, the manifold-topology can be
recovered from . We also state a conjecture on how the chronological
relation could be defined directly in terms of .Comment: v2: 9 pages, 2 figures. Minor change
The Vestibular Drive for Balance Control Is Dependent on Multiple Sensory Cues of Gravity
Vestibular signals, which encode head movement in space as well as orientation relative to gravity, contribute to the ongoing muscle activity required to stand. The strength of this vestibular contribution changes with the presence and quality of sensory cues of balance. Here we investigate whether the vestibular drive for standing balance also depends on different sensory cues of gravity by examining vestibular-evoked muscle responses when independently varying load and gravity conditions. Standing subjects were braced by a backboard structure that limited whole-body sway to the sagittal plane while load and vestibular cues of gravity were manipulated by: (a) loading the body downward at 1.5 and 2 times body weight (i.e., load cues), and/or (b) exposing subjects to brief periods (20 s) of micro- (<0.05 g) and hyper-gravity (∼1.8 g) during parabolic flights (i.e., vestibular cues). A stochastic electrical vestibular stimulus (0–25 Hz) delivered during these tasks evoked a vestibular-error signal and corrective muscles responses that were used to assess the vestibular drive to standing balance. With additional load, the magnitude of the vestibular-evoked muscle responses progressively increased, however, when these responses were normalized by the ongoing muscle activity, they decreased and plateaued at 1.5 times body weight. This demonstrates that the increased muscle activity necessary to stand with additional load is accompanied a proportionally smaller increase in vestibular input. This reduction in the relative vestibular contribution to balance was also observed when we varied the vestibular cues of gravity, but only during an absence (<0.05 g) and not an excess (∼1.8 g) of gravity when compared to conditions with normal 1 g gravity signals and equivalent load signals. Despite these changes, vestibular-evoked responses were observed in all conditions, indicating that vestibular cues of balance contribute to upright standing even in the near absence of a vestibular signal of gravity (i.e., micro-gravity). Overall, these experiments provide evidence that both load and vestibular cues of gravity influence the vestibular signal processing for the control of standing balance
TMS motor mapping: Comparing the absolute reliability of digital reconstruction methods to the golden standard
Background: Changes in transcranial magnetic stimulation motor map parameters can be used to quantify plasticity in the human motor cortex. The golden standard uses a counting analysis of motor evoked potentials (MEPs) acquired with a predefined grid. Recently, digital reconstruction methods have been proposed, allowing MEPs to be acquired with a faster pseudorandom procedure. However, the reliability of these reconstruction methods has never been compared to the golden standard. Objective: To compare the absolute reliability of the reconstruction methods with the golden standard. Methods: In 21 healthy subjects, both grid and pseudorandom acquisition were performed twice on the first day and once on the second day. The standard error of measurement was calculated for the counting analysis and the digital reconstructions. Results: The standard error of measurement was at least equal using digital reconstructions. Conclusion: Pseudorandom acquisition and digital reconstruction can be used in intervention studies without sacrificing reliability
The vestibular drive for balance control is dependent on multiple sensory cues of gravity
Vestibular signals, which encode head movement in space as well as orientation relative to gravity, contribute to the ongoing muscle activity required to stand. The strength of this vestibular contribution changes with the presence and quality of sensory cues of balance. Here we investigate whether the vestibular drive for standing balance also depends on different sensory cues of gravity by examining vestibular-evoked muscle responses when independently varying load and gravity conditions. Standing subjects were braced by a backboard structure that limited whole-body sway to the sagittal plane while load and vestibular cues of gravity were manipulated by: (a) loading the body downward at 1.5 and 2 times body weight (i.e., load cues), and/or (b) exposing subjects to brief periods (20 s) of micro- (<0.05 g) and hyper-gravity (∼1.8 g) during parabolic flights (i.e., vestibular cues). A stochastic electrical vestibular stimulus (0-25 Hz) delivered during these tasks evoked a vestibular-error signal and corrective muscles responses that were used to assess the vestibular drive to standing balance. With additional load, the magnitude of the vestibular-evoked muscle responses progressively increased, however, when these responses were normalized by the ongoing muscle activity, they decreased and plateaued at 1.5 times body weight. This demonstrates that the increased muscle activity necessary to stand with additional load is accompanied a proportionally smaller increase in vestibular input. This reduction in the relative vestibular contribution to balance was also observed when we varied the vestibular cues of gravity, but only during an absence (<0.05 g) and not an excess (∼1.8 g) of gravity when compared to conditions with normal 1 g gravity signals and equivalent load signals. Despite these changes, vestibular-evoked responses were observed in all conditions, indicating that vestibular cues of balance contribute to upright standing even in the near absence of a vestibular signal of gravity (i.e., micro-gravity). Overall, these experiments provide evidence that both load and vestibular cues of gravity influence the vestibular signal processing for the control of standing balance.Biomechanical EngineeringBiomechatronics & Human-Machine Contro
TMS motor mapping: Comparing the absolute reliability of digital reconstruction methods to the golden standard
Background: Changes in transcranial magnetic stimulation motor map parameters can be used to quantify plasticity in the human motor cortex. The golden standard uses a counting analysis of motor evoked potentials (MEPs) acquired with a predefined grid. Recently, digital reconstruction methods have been proposed, allowing MEPs to be acquired with a faster pseudorandom procedure. However, the reliability of these reconstruction methods has never been compared to the golden standard.Objective: To compare the absolute reliability of the reconstruction methods with the golden standard.Methods: In 21 healthy subjects, both grid and pseudorandom acquisition were performed twice on the first day and once on the second day. The standard error of measurement was calculated for the counting analysis and the digital reconstructions.Results: The standard error of measurement was at least equal using digital reconstructions.Conclusion: Pseudorandom acquisition and digital reconstruction can be used in intervention studies without sacrificing reliability. (C) 2018 The Authors. Published by Elsevier Inc
Optical regulation of class C GPCRs by photoswitchable orthogonal remotely tethered ligands
G protein-coupled receptors (GPCRs) respond to a wide range of extracellular cues to initiate complex downstream signaling cascades that control myriad aspects of cell function. Despite a long-standing appreciation of their importance to both basic physiology and disease treatment, it remains a major challenge to understand the dynamic activation patterns of GPCRs and the mechanisms by which they modulate biological processes at the molecular, cellular, and tissue levels. Unfortunately, classical methods of pharmacology and genetic knockout are often unable to provide the requisite precision needed to probe such questions. This is an especially pressing challenge for the class C GPCR family which includes receptors for the major excitatory and inhibitory neurotransmitters, glutamate and GABA, which signal in a rapid, spatially-delimited manner and contain many different subtypes whose roles are difficult to disentangle. The desire to manipulate class C GPCRs with spatiotemporal precision, genetic targeting, and subtype specificity has led to the development of a variety of photopharmacological tools. Of particular promise are the photoswitchable orthogonal remotely tethered ligands (“PORTLs”) which attach to self-labeling tags that are genetically encoded into full length, wild-type metabotropic glutamate receptors (mGluRs) and allow the receptor to be liganded and un-liganded in response to different wavelengths of illumination. While powerful for studying class C GPCRs, a number of detailed considerations must be made when working with these tools. The protocol included here should provide a basis for the development, characterization, optimization, and application of PORTLs for a wide range of GPCRs