5 research outputs found

    On the relative role of abiotic and biotic controls in channel network development: insights from scaled tidal flume experiments

    Get PDF
    Tidal marshes provide highly valued ecosystem services, which depend on variations in the geometric properties of the tidal channel networks dissecting marsh landscapes. The development and evolution of channel network properties are controlled by both abiotic (dynamic flow–landform feedbacks) and biotic processes (e.g. vegetation–flow–landform feedbacks). However, the relative role of biotic and abiotic processes, and under which condition one or the other is more dominant, remains poorly understood. In this study, we investigated the impact of spatio-temporal plant colonization patterns on tidal channel network development through flume experiments. Four scaled experiments mimicking tidal landscape development were conducted in a tidal flume facility: two control experiments without vegetation, a third experiment with hydrochorous vegetation colonization (i.e. seed dispersal via the tidal flow), and a fourth with patchy colonization (i.e. by direct seeding on the sediment bed). Our results show that more dense and efficient channel networks are found in the vegetation experiments, especially in the hydrochorous seeding experiment with slower vegetation colonization. Further, an interdependency between abiotic and biotic controls on channel development can be deduced. Whether biotic factors affect channel network development seems to depend on the force of the hydrodynamic energy and the stage of the system development. Vegetation–flow–landform feedbacks are only dominant in contributing to channel development in places where intermediate hydrodynamic energy levels occur and mainly have an impact during the transition phase from a bare to a vegetated landscape state. Overall, our findings suggest a zonal domination of abiotic processes at the seaward side of intertidal basins, while biotic processes have an additional effect on system development more towards the landward side

    Efficacy and safety testing of mycotocoxin-detoxifying agents in broilers following the European Food Safety Authority guidelines

    No full text
    Contamination of feeds with mycotoxins is a worldwide problem and mycotoxin-detoxifying agents are used to decrease their negative effect. The European Food Safety Authority recently stated guidelines and end-points for the efficacy testing of detoxifiers. Our study revealed that plasma concentrations of deoxynivalenol and deepoxy-deoxynivalenol were too low to assess efficacy of 2 commercially available mycotoxin-detoxifying agents against deoxynivalenol after 3 wk of continuous feeding of this mycotoxin at concentrations of 2.44 +/- 0.70 mg/kg of feed and 7.54 +/- 2.20 mg/kg of feed in broilers. This correlates with the poor absorption of deoxynivalenol in poultry. A safety study with 2 commercially available detoxifying agents and veterinary drugs showed innovative results with regard to the pharmacokinetics of 2 antibiotics after oral dosing in the drinking water. The plasma and kidney tissue concentrations of oxytetracycline were significantly higher in broilers receiving a biotransforming agent in the feed compared with control birds. For amoxicillin, the plasma concentrations were significantly higher for broilers receiving an adsorbing agent in comparison to birds receiving the biotransforming agent, but not to the control group. Mycotoxin-detoxifying agents can thus interact with the oral bioavailability of antibiotics depending on the antibiotic and detoxifying agent, with possible adverse effects on the health of animals and humans

    The role of alanine glyoxylate transaminase-2 (agxt2) in β-alanine and carnosine metabolism of healthy mice and humans

    No full text
    Purpose: Chronic β-alanine supplementation leads to increased levels of muscle histidine-containing dipeptides. However, the majority of ingested β-alanine is, most likely, degraded by two transaminases: GABA-T and AGXT2. In contrast to GABA-T, the in vivo role of AGXT2 with respect to β-alanine metabolism is unknown. The purpose of the present work is to investigate if AGXT2 is functionally involved in β-alanine homeostasis. Methods: Muscle histidine-containing dipeptides levels were determined in AGXT2 overexpressing or knock-out mice and in human subjects with different rs37369 genotypes which is known to affect AGXT2 activity. Further, plasma β-alanine kinetic was measured and urine was obtained from subjects with different rs37369 genotypes following ingestion of 1400 mg β-alanine. Result: Overexpression of AGXT2 decreased circulating and muscle histidine-containing dipeptides (> 70% decrease; p  0.05). In humans, the results support the evidence that decreased AGXT2 activity is not associated with altered histidine-containing dipeptides levels (p > 0.05). Additionally, following an acute dose of β-alanine, no differences in pharmacokinetic response were measured between subjects with different rs37369 genotypes (p > 0.05). Interestingly, urinary β-alanine excretion was 103% higher in subjects associated with lower AGXT2 activity, compared to subjects associated with normal AGXT2 activity (p < 0.05). Conclusion: The data suggest that in vivo, β-alanine is a substrate of AGXT2; however, its importance in the metabolism of β-alanine and histidine-containing dipeptides seems small
    corecore