270 research outputs found

    Liquid 4He near the superfluid transition in the presence of a heat current and gravity

    Full text link
    The effects of a heat current and gravity in liquid 4He near the superfluid transition are investigated for temperatures above and below T_lambda. We present a renormalization-group calculation based on model F for the Green's function in a self-consistent approximation which in quantum many-particle theory is known as the Hartree approximation. The approach can handle a zero average order parameter above and below T_lambda and includes effects of vortices. We calculate the thermal conductivity and the specific heat for all temperatures T and heat currents Q in the critical regime. Furthermore, we calculate the temperature profile. Below T_lambda we find a second correlation length which describes the dephasing of the order parameter field due to vortices. We find dissipation and mutual friction of the superfluid-normal fluid counterflow and calculate the Gorter-Mellink coefficient A. We compare our theoretical results with recent experiments.Comment: 26 pages, 9 figure

    Criticality and Superfluidity in liquid He-4 under Nonequilibrium Conditions

    Full text link
    We review a striking array of recent experiments, and their theoretical interpretations, on the superfluid transition in 4^4He in the presence of a heat flux, QQ. We define and evaluate a new set of critical point exponents. The statics and dynamics of the superfluid-normal interface are discussed, with special attention to the role of gravity. If QQ is in the same direction as gravity, a self-organized state can arise, in which the entire sample has a uniform reduced temperature, on either the normal or superfluid side of the transition. Finally, we review recent theory and experiment regarding the heat capacity at constant QQ. The excitement that surrounds this field arises from the fact that advanced thermometry and the future availability of a microgravity experimental platform aboard the International Space Station will soon open to experimental exploration decades of reduced temperature that were previously inaccessible.Comment: 16 pages, 9 figures, plus harvard.sty style file for references Accepted for publication in Colloquia section of Reviews of Modern Physic

    The environmental and genetic determinants of chick telomere length in Tree Swallows (Tachycineta bicolor)

    Get PDF
    Conditions during early life can have dramatic effects on adult characteristics and fitness. However, we still know little about the mechanisms that mediate these relationships. Telomere shortening is one possibility. Telomeres are long sequences of DNA that protect the ends of chromosomes. They shorten naturally throughout an individual's life, and individuals with short telomeres tend to have poorer health and reduced survival. Given this connection between telomere length (TL) and fitness, natural selection should favor individuals that are able to retain longer telomeres for a greater portion of their lives. However, the ability of natural selection to act on TL depends on the extent to which genetic and environmental factors influence TL. In this study, we experimentally enlarged broods of Tree Swallows (Tachycineta bicolor) to test the effects of demanding early-life conditions on TL, while simultaneously cross-fostering chicks to estimate heritable genetic influences on TL. In addition, we estimated the effects of parental age and chick sex on chick TL. We found that TL is highly heritable in Tree Swallow chicks, and that the maternal genetic basis for TL is stronger than is the paternal genetic basis. In contrast, the experimental manipulation of brood size had only a weak effect on chick TL, suggesting that the role of environmental factors in influencing TL early in life is limited. There was no effect of chick sex or parental age on chick TL. While these results are consistent with those reported in some studies, they are in conflict with others. These disparate conclusions might be attributable to the inherent complexity of telomere dynamics playing out differently in different populations or to study-specific variation in the age at which subjects were measured.John Weber endowment; Athena fund at the Cornell Lab of Ornithology; Department of Ecology and Evolutionary Biology; Andrew W. Mellon Student research Grants at Cornell University; Sigma Xi; Society for Integrative and comparative Biology; American Ornithologists' Union; NSF LTREB grants [DEB-0717021, DEB-1242573]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    A First-Landau-Level Laughlin/Jain Wave Function for the Fractional Quantum Hall Effect

    Full text link
    We show that the introduction of a more general closed-shell operator allows one to extend Laughlin's wave function to account for the richer hierarchies (1/3, 2/5, 3/7 ...; 1/5, 2/9, 3/13, ..., etc.) found experimentally. The construction identifies the special hierarchy states with condensates of correlated electron clusters. This clustering implies a single-particle (ls)j algebra within the first Landau level (LL) identical to that of multiply filled LLs in the integer quantum Hall effect. The end result is a simple generalized wave function that reproduces the results of both Laughlin and Jain, without reference to higher LLs or projection.Comment: Revtex. In this replacement we show how to generate the Jain wave function explicitly, by acting with the generalized ls closed-shell operator discussed in the original version. We also walk the reader through a classical 1d caricature of this problem so that he/she can better understand why 2s+1, where s is the spin, should be associated with the number of electrons associated with the underlying clusters or composites. 11 page

    Superfluid phase transition and strong-coupling effects in an ultracold Fermi gas with mass imbalance

    Full text link
    We investigate the superfluid phase transition and effects of mass imbalance in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover regime of an cold Fermi gas. We point out that the Gaussian fluctuation theory developed by Nozi\`eres and Schmitt-Rink and the TT-matrix theory, that are now widely used to study strong-coupling physics of cold Fermi gases, give unphysical results in the presence of mass imbalance. To overcome this problem, we extend the TT-matrix theory to include higher-order pairing fluctuations. Using this, we examine how the mass imbalance affects the superfluid phase transition. Since the mass imbalance is an important key in various Fermi superfluids, such as 40^{40}K-6^6Li Fermi gas mixture, exciton condensate, and color superconductivity in a dense quark matter, our results would be useful for the study of these recently developing superfluid systems.Comment: 7 pages, 4 figures, Proceedings of QFS-201

    Optically Pumped NMR Measurements of the Electron Spin Polarization in GaAs Quantum Wells near Landau Level Filling Factor nu=1/3

    Full text link
    The Knight shift of Ga-71 nuclei is measured in two different electron-doped multiple quantum well samples using optically pumped NMR. These data are the first direct measurements of the electron spin polarization, P(nu,T)=/max, near nu=1/3. The P(T) data at nu=1/3 probe the neutral spin-flip excitations of a fractional quantum Hall ferromagnet. In addition, the saturated P(nu) drops on either side of nu=1/3, even in a Btot=12 Tesla field. The observed depolarization is quite small, consistent with an average of about 0.1 spin-flips per quasihole (or quasiparticle), a value which does not appear to be explicable by the current theoretical understanding of the FQHE near nu=1/3.Comment: 4 pages (REVTEX), 5 eps figures embedded in text; minor changes, published versio

    Stability of condensate in superconductors

    Full text link
    According to the BCS theory the superconducting condensate develops in a single quantum mode and no Cooper pairs out of the condensate are assumed. Here we discuss a mechanism by which the successful mode inhibits condensation in neighboring modes and suppresses a creation of noncondensed Cooper pairs. It is shown that condensed and noncondensed Cooper pairs are separated by an energy gap which is smaller than the superconducting gap but large enough to prevent nucleation in all other modes and to eliminate effects of noncondensed Cooper pairs on properties of superconductors. Our result thus justifies basic assumptions of the BCS theory and confirms that the BCS condensate is stable with respect to two-particle excitations

    Hidden symmetry and knot solitons in a charged two-condensate Bose system

    Full text link
    We show that a charged two-condensate Ginzburg-Landau model or equivalently a Gross-Pitaevskii functional for two charged Bose condensates, can be mapped onto a version of the nonlinear O(3) σ\sigma-model. This implies in particular that such a system possesses a hidden O(3) symmetry and allows for the formation of stable knotted solitons. The results, in particular, should be relevant to the superconducting MgB_2.Comment: This version will appear in Phys. Rev. B, added a comment on the case when condensates in two bands do not independently conserve, also added a figure and references to experimental papers on MgB_2 (for which our study is relevant). Miscellaneous links on knot solitons are also available at the homepage of one of the authors http://www.teorfys.uu.se/PEOPLE/egor/ . Animations of knot solitons are available at http://users.utu.fi/h/hietarin/knots/c45_p2.mp

    Ginzburg-Landau theory of superconductors with short coherence length

    Full text link
    We consider Fermions in two dimensions with an attractive interaction in the singlet d-wave channel of arbitrary strength. By means of a Hubbard-Stratonovich transformation a statistical Ginzburg-Landau theory is derived, which describes the smooth crossover from a weak-coupling BCS superconductor to a condensate of composite Bosons. Adjusting the interaction strength to the observed slope of H_c2 at T_c in the optimally doped high-T_c compounds YBCO and BSCCO, we determine the associated values of the Ginzburg-Landau correlation length xi and the London penetration depth lambda. The resulting dimensionless ratio k_F xi(0) approx 5-8 and the Ginzburg-Landau parameter kappa=lambda xi approx 90-100 agree well with the experimentally observed values. These parameters indicate that the optimally doped materials are still on the weak coupling side of the crossover to a Bose regime.Comment: 12 pages, RevTeX, 6 postscript figures, resubmitted with minor changes in section III, to appear in Physical Review

    Effective action for Superconductors and BCS-Bose crossover

    Full text link
    A standard perturbative expansion around the mean-field solution is used to derive the low-energy effective action for superconductors at T=0. Taking into account the density fluctuations at the outset we get the effective action where the density ρ\rho is the conjugated momentum to the phase θ\theta of the order parameter. In the hydrodynamic regime, the dynamics of the superconductor is described by a time dependent non-linear Schr\"odinger equation (TDNLS) for the field Ψ(x)=ρ/2eiθ\Psi(x)=\sqrt{\rho/2} e^{i\theta}. The evolution of the density fluctuations in the crossover from weak-coupling (BCS) to strong-coupling (Bose condensation of localized pairs) superconductivity is discussed for the attractive Hubbard model. In the bosonic limit, the TDNLS equation reduces to the the Gross-Pitaevskii equation for the order parameter, as in the standard description of superfluidity. The conditions under which a phase-only action can be derived in the presence of a long-range interaction to describe the physics of the superconductivity of ``bad metals'' are discussed.Comment: 13 pages, accepted for publication on Phys. Rev.
    corecore