72 research outputs found

    Investigating the Growth of Algae Under Low Atmospheric Pressures for Potential Food and Oxygen Production on Mars

    Get PDF
    With long-term missions to Mars and beyond that would not allow resupply, a self-sustaining Bioregenerative Life Support System (BLSS) is essential. Algae are promising candidates for BLSS due to their completely edible biomass, fast growth rates and ease of handling. Extremophilic algae such as snow algae and halophilic algae may also be especially suited for a BLSS because of their ability to grow under extreme conditions. However, as indicated from over 50 prior space studies examining algal growth, little is known about the growth of algae at close to Mars-relevant pressures. Here, we explored the potential for five algae species to produce oxygen and food under low-pressure conditions relevant to Mars. These included Chloromonas brevispina, Kremastochrysopsis austriaca, Dunaliella salina, Chlorella vulgaris, and Spirulina plantensis. The cultures were grown in duplicate in a low-pressure growth chamber at 670 ± 20 mbar, 330 ± 20 mbar, 160 ± 20 mbar, and 80 ± 2.5 mbar pressures under continuous light exposure (62–70 μmol m–2 s–1). The atmosphere was evacuated and purged with CO2 after sampling each week. Growth experiments showed that D. salina, C. brevispina, and C. vulgaris were the best candidates to be used for BLSS at low pressure. The highest carrying capacities for each species under low pressure conditions were achieved by D. salina at 160 mbar (30.0 ± 4.6 × 105 cells/ml), followed by C. brevispina at 330 mbar (19.8 ± 0.9 × 105 cells/ml) and C. vulgaris at 160 mbar (13.0 ± 1.5 × 105 cells/ml). C. brevispina, D. salina, and C. vulgaris all also displayed substantial growth at the lowest tested pressure of 80 mbar reaching concentrations of 43.4 ± 2.5 × 104, 15.8 ± 1.3 × 104, and 57.1 ± 4.5 × 104 cells per ml, respectively. These results indicate that these species are promising candidates for the development of a Mars-based BLSS using low pressure (∼200–300 mbar) greenhouses and inflatable structures that have already been conceptualized and designed

    Clay mineral formation under oxidized conditions and implications for paleoenvironments and organic preservation on Mars

    Get PDF
    Clay mineral-bearing locations have been targeted for martian exploration as potentially habitable environments and as possible repositories for the preservation of organic matter. Although organic matter has been detected at Gale Crater, Mars, its concentrations are lower than expected from meteoritic and indigenous igneous and hydrothermal reduced carbon. We conducted synthesis experiments motivated by the hypothesis that some clay mineral formation may have occurred under oxidized conditions conducive to the destruction of organics. Previous work has suggested that anoxic and/or reducing conditions are needed to synthesize the Fe-rich clay mineral nontronite at low temperatures. In contrast, our experiments demonstrated the rapid formation of Fe-rich clay minerals of variable crystallinity from aqueous Fe^(3+) with small amounts of aqueous Mg^(2+). Our results suggest that Fe-rich clay minerals such as nontronite can form rapidly under oxidized conditions, which could help explain low concentrations of organics within some smectite-containing rocks or sediments on Mars

    The effect of low temperature on the Raman spectra of calcium-rich sulfates on Mars

    Get PDF
    Raman spectra (532 nm diode laser) of gypsum, syngenite and görgeyite powders were studied from 273 to 83 K every −10 K. Although it was found that not all the Raman peaks are temperature-sensitive, the effect of temperature on the Raman signal of some bands was modelled. It was observed that the main bands of the three sulfates shift toward higher wavenumbers as temperature decreases. The strengthening of the bonds causes an increase in energy and, consequently, higher wavenumbers. However, –OH bands shift depending on the crystal structure they acquire as the temperature decreases, so not all –OH bands behave in the same way. Finally, the gypsum –OH bands change to more ordered crystalline structures with decreasing temperature, so their bandwidths become narrower and sharper
    • …
    corecore