14,972 research outputs found
Stress effect on magnetoimpedance (MI) in amorphous wires at GHz frequencies and application to stress-tunable microwave composite materials
The effect of tensile stress on magnetoimpedance (MI) in CoMnSiB amorphous
wires at microwave frequencies (0.5-3 GHz) is investigated both experimentally
and theoretically. In the presence of the dc bias magnetic field of the order
of the anisotropy field, the impedance shows very large and sensitive change
when the wire is subjected to a tensile stress: 100% and 60% per 180 MPa for
frequencies 500 MHz and 2.5 GHz, respectively. It is demonstrated that this
behavior owes mainly to the directional change in the equilibrium magnetization
caused by the applied stress and field, which agrees well with the theoretical
results for the surface impedance. This stress effect on MI is proposed to use
for creating microwave stress-tunable composite materials containing short
magnetic wires. The analysis of the dielectric response from such materials
shows that depending on the stress level in the material, the dispersion of the
effective permittivity can be of a resonant or relaxation type with a
considerable change in its values (up to 100% at 600 MPa). This media can be
used for structural stress monitoring by microwave contrast imaging
Einstein's equations and the chiral model
The vacuum Einstein equations for spacetimes with two commuting spacelike
Killing field symmetries are studied using the Ashtekar variables. The case of
compact spacelike hypersurfaces which are three-tori is considered, and the
determinant of the Killing two-torus metric is chosen as the time gauge. The
Hamiltonian evolution equations in this gauge may be rewritten as those of a
modified SL(2) principal chiral model with a time dependent `coupling
constant', or equivalently, with time dependent SL(2) structure constants. The
evolution equations have a generalized zero-curvature formulation. Using this
form, the explicit time dependence of an infinite number of
spatial-diffeomorphism invariant phase space functionals is extracted, and it
is shown that these are observables in the sense that they Poisson commute with
the reduced Hamiltonian. An infinite set of observables that have SL(2) indices
are also found. This determination of the explicit time dependence of an
infinite set of spatial-diffeomorphism invariant observables amounts to the
solutions of the Hamiltonian Einstein equations for these observables.Comment: 22 pages, RevTeX, to appear in Phys. Rev.
Observables for spacetimes with two Killing field symmetries
The Einstein equations for spacetimes with two commuting spacelike Killing
field symmetries are studied from a Hamiltonian point of view. The complexified
Ashtekar canonical variables are used, and the symmetry reduction is performed
directly in the Hamiltonian theory. The reduced system corresponds to the field
equations of the SL(2,R) chiral model with additional constraints.
On the classical phase space, a method of obtaining an infinite number of
constants of the motion, or observables, is given. The procedure involves
writing the Hamiltonian evolution equations as a single `zero curvature'
equation, and then employing techniques used in the study of two dimensional
integrable models. Two infinite sets of observables are obtained explicitly as
functionals of the phase space variables. One set carries sl(2,R) Lie algebra
indices and forms an infinite dimensional Poisson algebra, while the other is
formed from traces of SL(2,R) holonomies that commute with one another. The
restriction of the (complex) observables to the Euclidean and Lorentzian
sectors is discussed.
It is also shown that the sl(2,R) observables can be associated with a
solution generating technique which is linked to that given by Geroch.Comment: 23 pages (LateX-RevTeX), Alberta-Thy-55-9
How can exact and approximate solutions of Einstein's field equations be compared?
The problem of comparison of the stationary axisymmetric vacuum solutions
obtained within the framework of exact and approximate approaches for the
description of the same general relativistic systems is considered. We suggest
two ways of carrying out such comparison: (i) through the calculation of the
Ernst complex potential associated with the approximate solution whose form on
the symmetry axis is subsequently used for the identification of the exact
solution possessing the same multipole structure, and (ii) the generation of
approximate solutions from exact ones by expanding the latter in series of
powers of a small parameter. The central result of our paper is the derivation
of the correct approximate analogues of the double-Kerr solution possessing the
physically meaningful equilibrium configurations. We also show that the
interpretation of an approximate solution originally attributed to it on the
basis of some general physical suppositions may not coincide with its true
nature established with the aid of a more accurate technique.Comment: 32 pages, 5 figure
Highly resolved intravital striped-illumination microscopy of germinal centers
Monitoring cellular communication by intravital deep-tissue multi-photon microscopy is the key for understanding the fate of immune cells within thick tissue samples and organs in health and disease. By controlling the scanning pattern in multi-photon microscopy and applying appropriate numerical algorithms, we developed a striped-illumination approach, which enabled us to achieve 3-fold better axial resolution and improved signal-to-noise ratio, i.e. contrast, in more than 100 ”m tissue depth within highly scattering tissue of lymphoid organs as compared to standard multi-photon microscopy. The acquisition speed as well as photobleaching and photodamage effects were similar to standard photo-multiplier-based technique, whereas the imaging depth was slightly lower due to the use of field detectors. By using the striped-illumination approach, we are able to observe the dynamics of immune complex deposits on secondary follicular dendritic cells - on the level of a few protein molecules in germinal centers
Constants of motion for vacuum general relativity
The 3+1 Hamiltonian Einstein equations, reduced by imposing two commuting
spacelike Killing vector fields, may be written as the equations of the
principal chiral model with certain `source' terms. Using this
formulation, we give a procedure for generating an infinite number of non-local
constants of motion for this sector of the Einstein equations. The constants of
motion arise as explicit functionals on the phase space of Einstein gravity,
and are labelled by sl(2,R) indices.Comment: 10 pages, latex, version to appear in Phys. Rev. D
Multigene interactions and the prediction of depression in the Wisconsin Longitudinal Study
Objectives: Single genetic loci offer little predictive power for the identification of depression. This study examined whether an analysis of gene-gene (G x G) interactions of 78 single nucleotide polymorphisms (SNPs) in genes associated with depression and agerelated diseases would identify significant interactions with increased predictive power for depression. Design: A retrospective cohort study. Setting: A survey of participants in the Wisconsin Longitudinal Study. Participants: A total of 4811 persons (2464 women and 2347 men) who provided saliva for genotyping; the group comes from a randomly selected sample of Wisconsin high school graduates from the class of 1957 as well as a randomly selected sibling, almost all of whom are non-Hispanic white. Primary outcome measure: Depression as determine by the Composite International Diagnostic Interview-Short-Form. Results: Using a classification tree approach (recursive partitioning (RP)), the authors identified a number of candidate G 3 G interactions associated with depression. The primary SNP splits revealed by RP (ANKK1 rs1800497 (also known as DRD2 Taq1A) in men and DRD2 rs224592 in women) were found to be significant as single factors by logistic regression (LR) after controlling for multiple testing (p=0.001 for both). Without considering interaction effects, only one of the five subsequent RP splits reached nominal significance in LR (FTO rs1421085 in women, p=0.008). However, after controlling for G x G interactions by running LR on RP-specific subsets, every split became significant and grew larger in magnitude (OR (before) â (after): men: GNRH1 novel SNP: (1.43 â 1.57); women: APOC3 rs2854116: (1.28 â 1.55), ACVR2B rs3749386: (1.11 â 2.17), FTO rs1421085: (1.32 â 1.65), IL6 rs1800795: (1.12 â 1.85)). Conclusions: The results suggest that examining G x G interactions improves the identification of genetic associations predictive of depression. 4 of the SNPs identified in these interactions were located in two pathways well known to impact depression: neurotransmitter (ANKK1 and DRD2) and neuroendocrine (GNRH1 and ACVR2B) signalling. This study demonstrates the utility of RP analysis as an efficient and powerful exploratory analysis technique for uncovering genetic and molecular pathway interactions associated with disease aetiology
Cosmic Histories of Stars, Gas, Heavy Elements, and Dust
We present a set of coupled equations that relate the stellar, gaseous,
chemical, and radiation constituents of the universe averaged over the whole
galaxy population. Using as input the available data from quasar
absorption-line surveys, optical imaging and redshift surveys, and the COBE
DIRBE and FIRAS extragalactic infrared background measurements, we obtain
solutions for the cosmic histories of stars, interstellar gas, heavy elements,
dust, and radiation from stars and dust in galaxies. Our solutions reproduce
remarkably well a wide variety of observations that were not used as input,
including the integrated background light from galaxy counts, the optical and
near-infrared emissivities from galaxy surveys, the local infrared emissivities
from the IRAS survey, the mean abundance of heavy elements from surveys of
damped Lyman-alpha systems, and the global star formation rates from H
surveys and submillimeter observations. The solutions presented here suggest
that the process of galaxy formation appears to have undergone an early period
of substantial inflow to assemble interstellar gas at , a subsequent
period of intense star formation and chemical enrichment at , and a recent period of rapid decline in the gas content, star
formation rate, optical stellar emissivity, and infrared dust emission at
. [abridged version]Comment: 29 pages, ApJ in press, 10 Sept 9
Pure-radiation gravitational fields with a simple twist and a Killing vector
Pure-radiation solutions are found, exploiting the analogy with the Euler-
Darboux equation for aligned colliding plane waves and the Euler-Tricomi
equation in hydrodynamics of two-dimensional flow. They do not depend on one of
the spacelike coordinates and comprise the Hauser solution as a special
subcase.Comment: revtex, 9 page
- âŠ