2,104 research outputs found

    Spontaneous Motor Entrainment to Music in Multiple Vocal Mimicking Species

    Get PDF
    SummaryThe human capacity for music consists of certain core phenomena, including the tendency to entrain, or align movement, to an external auditory pulse [1–3]. This ability, fundamental both for music production and for coordinated dance, has been repeatedly highlighted as uniquely human [4–11]. However, it has recently been hypothesized that entrainment evolved as a by-product of vocal mimicry, generating the strong prediction that only vocal mimicking animals may be able to entrain [12, 13]. Here we provide comparative data demonstrating the existence of two proficient vocal mimicking nonhuman animals (parrots) that entrain to music, spontaneously producing synchronized movements resembling human dance. We also provide an extensive comparative data set from a global video database systematically analyzed for evidence of entrainment in hundreds of species both capable and incapable of vocal mimicry. Despite the higher representation of vocal nonmimics in the database and comparable exposure of mimics and nonmimics to humans and music, only vocal mimics showed evidence of entrainment. We conclude that entrainment is not unique to humans and that the distribution of entrainment across species supports the hypothesis that entrainment evolved as a by-product of selection for vocal mimicry

    The upper airway response to pollen is enhanced by exposure to combustion particulates: a pilot human experimental challenge study.

    Get PDF
    Although human experimental studies have shown that gaseous pollutants enhance the inflammatory response to allergens, human data on whether combustion particulates enhance the inflammatory response to allergen are limited. Therefore, we conducted a human experimental study to investigate whether combustion particulates enhance the inflammatory response to aeroallergens. "Enhancement" refers to a greater-than-additive response when combustion particulates are delivered with allergen, compared with the responses when particulates and allergen are delivered alone. Eight subjects, five atopic and three nonatopic, participated in three randomized exposure-challenge sessions at least 2 weeks apart (i.e., clean air followed by allergen, particles followed by no allergen, or particles followed by allergen). Each session consisted of nasal exposure to combustion particles (target concentration of 1.0 mg/m3) or clean air for 1 hr, followed 3 hr later by challenge with whole pollen grains or placebo. Nasal lavage was performed immediately before particle or clean air exposure, immediately after exposure, and 4, 18 and 42 hr after pollen challenge. Cell counts, differentials, and measurement of cytokines were performed on each nasal lavage. In atopic but not in nonatopic subjects, when allergen was preceded by particulates, there was a significant enhancement immediately after pollen challenge in nasal lavage leukocytes and neutrophils (29.7 X 10(3) cells/mL and 25.4 X 10(3) cells/mL, respectively). This represents a 143% and 130% enhancement, respectively. The enhanced response for interleukin-4 was 3.23 pg/mL (p = 0.06), a 395% enhancement. In atopic subjects there was evidence of an enhanced response when particulates, as compared to clean air, preceded the allergen challenge

    Transcriptional response in the unaffected kidney after contralateral hydronephrosis or nephrectomy

    Get PDF
    Transcriptional response in the unaffected kidney after contralateral hydronephrosis or nephrectomy.BackgroundUnilateral loss of kidney function is followed by compensatory contralateral growth. The early, genome-wide transcriptional response of the untouched kidney to unilateral ureteral obstruction (UUO) or unilateral nephrectomy is unknown.MethodsTwelve adult male Sprague-Dawley rats were subjected to UUO and twelve rats to unilateral nephrectomy. At time points 12, 24, and 72 hours after insult four rats each were sacrificed and the contralateral kidney harvested for genome-wide gene expression analysis, transcription factor analysis, and histomorphology.ResultsMicroarray studies revealed that the majority of differentially expressed transcripts were suppressed in UUO and unilateral nephrectomy compared to control kidneys. The function of these suppressed genes is predominantly growth inhibition and apoptosis suggesting a net pro-hypertrophic response. Insulin-like growth factor-2 (IGF-2)-binding protein was one of the few activated genes. We observed a distinctly different molecular signature between UUO and unilateral nephrectomy at the three time points investigated. The early response in UUO rats suggests a counterbalance to the nonfiltering kidney by activation of transport pathways such as the aquaporins. Unilateral nephrectomy kidneys, on the other hand, respond immediately to contralateral nephrectomy by activation of cell cycle regulators such as the cyclin family. Several genes with weakly defined function were found to be associated with either UUO or unilateral nephrectomy. Transcription factor analysis of the identified transcripts suggests common regulation at least of some of these genes. All kidneys showed normal histology.ConclusionRelease of growth inhibition by nephrectomy leads to immediate cell cycle activation after unilateral nephrectomy, whereas UUO kidneys counterbalance filtration failure by activation of several transporters

    Rationally designed immunogens enable immune focusing following SARS-CoV-2 spike imprinting

    Get PDF
    Eliciting antibodies to surface-exposed viral glycoproteins can generate protective responses that control and prevent future infections. Targeting conserved sites may reduce the likelihood of viral escape and limit the spread of related viruses with pandemic potential. Here we leverage rational immunogen design to focus humoral responses on conserved epitopes. Using glycan engineering and epitope scaffolding in boosting immunogens, we focus murine serum antibody responses to conserved receptor binding motif (RBM) and receptor binding domain (RBD) epitopes following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike imprinting. Although all engineered immunogens elicit a robust SARS-CoV-2-neutralizing serum response, RBM-focusing immunogens exhibit increased potency against related sarbecoviruses, SARS-CoV, WIV1-CoV, RaTG13-CoV, and SHC014-CoV; structural characterization of representative antibodies defines a conserved epitope. RBM-focused sera confer protection against SARS-CoV-2 challenge. Thus, RBM focusing is a promising strategy to elicit breadth across emerging sarbecoviruses without compromising SARS-CoV-2 protection. These engineering strategies are adaptable to other viral glycoproteins for targeting conserved epitopes

    Time and event-specific deep learning for personalized risk assessment after cardiac perfusion imaging

    Full text link
    Standard clinical interpretation of myocardial perfusion imaging (MPI) has proven prognostic value for predicting major adverse cardiovascular events (MACE). However, personalizing predictions to a specific event type and time interval is more challenging. We demonstrate an explainable deep learning model that predicts the time-specific risk separately for all-cause death, acute coronary syndrome (ACS), and revascularization directly from MPI and 15 clinical features. We train and test the model internally using 10-fold hold-out cross-validation (n = 20,418) and externally validate it in three separate sites (n = 13,988) with MACE follow-ups for a median of 3.1 years (interquartile range [IQR]: 1.6, 3.6). We evaluate the model using the cumulative dynamic area under receiver operating curve (cAUC). The best model performance in the external cohort is observed for short-term prediction - in the first six months after the scan, mean cAUC for ACS and all-cause death reaches 0.76 (95% confidence interval [CI]: 0.75, 0.77) and 0.78 (95% CI: 0.78, 0.79), respectively. The model outperforms conventional perfusion abnormality measures at all time points for the prediction of death in both internal and external validations, with improvement increasing gradually over time. Individualized patient explanations are visualized using waterfall plots, which highlight the contribution degree and direction for each feature. This approach allows the derivation of individual event probability as a function of time as well as patient- and event-specific risk explanations that may help draw attention to modifiable risk factors. Such a method could help present post-scan risk assessments to the patient and foster shared decision-making

    Unsupervised learning to characterize patients with known coronary artery disease undergoing myocardial perfusion imaging

    Full text link
    PURPOSE Patients with known coronary artery disease (CAD) comprise a heterogenous population with varied clinical and imaging characteristics. Unsupervised machine learning can identify new risk phenotypes in an unbiased fashion. We use cluster analysis to risk-stratify patients with known CAD undergoing single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). METHODS From 37,298 patients in the REFINE SPECT registry, we identified 9221 patients with known coronary artery disease. Unsupervised machine learning was performed using clinical (23), acquisition (17), and image analysis (24) parameters from 4774 patients (internal cohort) and validated with 4447 patients (external cohort). Risk stratification for all-cause mortality was compared to stress total perfusion deficit (< 5%, 5-10%, ≥10%). RESULTS Three clusters were identified, with patients in Cluster 3 having a higher body mass index, more diabetes mellitus and hypertension, and less likely to be male, have dyslipidemia, or undergo exercise stress imaging (p < 0.001 for all). In the external cohort, during median follow-up of 2.6 [0.14, 3.3] years, all-cause mortality occurred in 312 patients (7%). Cluster analysis provided better risk stratification for all-cause mortality (Cluster 3: hazard ratio (HR) 5.9, 95% confidence interval (CI) 4.0, 8.6, p < 0.001; Cluster 2: HR 3.3, 95% CI 2.5, 4.5, p < 0.001; Cluster 1, reference) compared to stress total perfusion deficit (≥10%: HR 1.9, 95% CI 1.5, 2.5 p < 0.001; < 5%: reference). CONCLUSIONS Our unsupervised cluster analysis in patients with known CAD undergoing SPECT MPI identified three distinct phenotypic clusters and predicted all-cause mortality better than ischemia alone

    Clinical phenotypes among patients with normal cardiac perfusion using unsupervised learning:a retrospective observational study

    Get PDF
    BACKGROUND: Myocardial perfusion imaging (MPI) is one of the most common cardiac scans and is used for diagnosis of coronary artery disease and assessment of cardiovascular risk. However, the large majority of MPI patients have normal results. We evaluated whether unsupervised machine learning could identify unique phenotypes among patients with normal scans and whether those phenotypes were associated with risk of death or myocardial infarction.METHODS: Patients from a large international multicenter MPI registry (10 sites) with normal perfusion by expert visual interpretation were included in this cohort analysis. The training population included 9849 patients, and external testing population 12,528 patients. Unsupervised cluster analysis was performed, with separate training and external testing cohorts, to identify clusters, with four distinct phenotypes. We evaluated the clinical and imaging features of clusters and their associations with death or myocardial infarction.FINDINGS: Patients in Clusters 1 and 2 almost exclusively underwent exercise stress, while patients in Clusters 3 and 4 mostly required pharmacologic stress. In external testing, the risk for Cluster 4 patients (20.2% of population, unadjusted hazard ratio [HR] 6.17, 95% confidence interval [CI] 4.64-8.20) was higher than the risk associated with pharmacologic stress (HR 3.03, 95% CI 2.53-3.63), or previous myocardial infarction (HR 1.82, 95% CI 1.40-2.36).INTERPRETATION: Unsupervised learning identified four distinct phenotypes of patients with normal perfusion scans, with a significant proportion of patients at very high risk of myocardial infarction or death. Our results suggest a potential role for patient phenotyping to improve risk stratification of patients with normal imaging results.FUNDING: This work was supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health [R35HL161195 to PS]. The REFINE SPECT database was supported by the National Heart, Lung, and Blood Institute at the National Institutes of Health [R01HL089765 to PS]. MCW was supported by the British Heart Foundation [FS/ICRF/20/26002].</p

    First circumglobal assessment of Southern Hemisphere humpback whale mitochondrial genetic variation and implications for management

    Get PDF
    The description of genetic population structure over a species\u27 geographic range can provide insights into its evolutionary history and also support effective management efforts. Assessments for globally distributed species are rare, however, requiring significant international coordination and collaboration. The global distribution of demographically discrete populations for the humpback whale Megaptera novaeangliae is not fully known, hampering the definition of appropriate management units. Here, we present the first circumglobal assessment of mito - chondrial genetic population structure across the species\u27 range in the Southern Hemisphere and Arabian Sea. We combine new and existing data from the mitochondrial (mt)DNA control region that resulted in a 311 bp consensus sequence of the mtDNA control region for 3009 individuals sampled across 14 breeding stocks and subpopulations currently recognized by the International Whaling Commission. We assess genetic diversity and test for genetic differentiation and also estimate the magnitude and directionality of historic matrilineal gene flow between putative populations. Our results indicate that maternally directed site fidelity drives significant genetic population structure between breeding stocks within ocean basins. However, patterns of connectivity differ across the circumpolar range, possibly as a result of differences in the extent of longitudinal movements on feeding areas. The number of population comparisons observed to be significantly differentiated were found to diminish at the subpopulation scale when nucleotide differences were examined, indicating that more complex processes underlie genetic structure at this scale. It is crucial that these complexities and uncertainties are afforded greater consideration in management and regulatory efforts
    corecore