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Summary
Background Myocardial perfusion imaging (MPI) is one of the most common cardiac scans and is used for diagnosis
of coronary artery disease and assessment of cardiovascular risk. However, the large majority of MPI patients have
normal results. We evaluated whether unsupervised machine learning could identify unique phenotypes among
patients with normal scans and whether those phenotypes were associated with risk of death or myocardial infarction.

Methods Patients from a large international multicenter MPI registry (10 sites) with normal perfusion by expert visual
interpretation were included in this cohort analysis. The training population included 9849 patients, and external
testing population 12,528 patients. Unsupervised cluster analysis was performed, with separate training and external
testing cohorts, to identify clusters, with four distinct phenotypes. We evaluated the clinical and imaging features of
clusters and their associations with death or myocardial infarction.

Findings Patients in Clusters 1 and 2 almost exclusively underwent exercise stress, while patients in Clusters 3 and 4
mostly required pharmacologic stress. In external testing, the risk for Cluster 4 patients (20.2% of population, un-
adjusted hazard ratio [HR] 6.17, 95% confidence interval [CI] 4.64–8.20) was higher than the risk associated with
pharmacologic stress (HR 3.03, 95% CI 2.53–3.63), or previous myocardial infarction (HR 1.82, 95% CI 1.40–2.36).

Interpretation Unsupervised learning identified four distinct phenotypes of patients with normal perfusion scans,
with a significant proportion of patients at very high risk of myocardial infarction or death. Our results suggest a
potential role for patient phenotyping to improve risk stratification of patients with normal imaging results.
*Corresponding author. Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, 90048, CA, USA.
E-mail address: Piotr.Slomka@cshs.org (P.J. Slomka).
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Research in context

Evidence before this study
We searched PubMed for articles with the following keywords:
“perfusion imaging” AND “unsupervised machine learning”
for studies up until August 2023. We identified 9 studies in
total, none of which focused on patients with normal
myocardial perfusion. Previous studies have evaluated risk
associated with specific clinical characteristics. In contrast,
unsupervised machine learning has the potential to identify
patient phenotypes which reflect multiple patient
characteristics.

Added value of this study
We applied an unsupervised machine learning model to
identify patient phenotypes among patients with normal
myocardial perfusion by expert visual interpretation.

Unsupervised machine identified 4 distinct patient clusters in
both internal (n = 9849) and external (n = 12,528)
populations. The risk associated with being in the fourth
cluster was higher than traditional high-risk groups, such as
inability to complete exercise stress or previous myocardial
infarction.

Implications of all the available evidence
Our results suggest that machine learning-based phenotyping
is potentially a powerful tool for patient classification and risk
stratification even when the key imaging result is normal.
These findings are relevant for the majority of patients
undergoing cardiac perfusion imaging; however, the
implications are potentially relevant for a variety of imaging
tests.
Introduction
Myocardial perfusion imaging (MPI) is one of the
most common heart scans performed for assessment
of coronary artery disease (approximately 6 million
procedures per year in United States and 15–20
million per year worldwide), second only to echocar-
diography.1 This test is frequently used for cardiovas-
cular risk stratification,2 with the presence of
abnormal myocardial perfusion being an established
marker of cardiovascular risk.3,4 However, the preva-
lence of abnormal myocardial perfusion has decreased
dramatically over time.5,6 In fact, the vast majority
(>90% in some cohorts)5 show normal perfusion.7

While these patients are generally lower risk, there is
still significant heterogeneity among them. The best
method to classify risk in this substantial population
following MPI is a clinically relevant challenge that
physicians face.

When identifying important sub-groups of patients
with normal perfusion, physicians have typically relied
on co-morbidities such as diabetes8 or history of coro-
nary artery disease.9 However, the increase in risk is
modest. Alternatively, physicians can look for
abnormal imaging findings other than perfusion. For
example, reduced left ventricular ejection fraction10 and
transient ischemic dilation of the left ventricle.11

However, these markers are seen in a minority of
studies and therefore are only helpful in identifying a
small number of high-risk patients. Identification of
clinically relevant phenotypes of patients with normal
perfusion remains a critically important and unmet
need.

Artificial intelligence techniques have emerged as
powerful tools for improving disease diagnosis or risk
stratification.12 These are frequently supervised models,
which are trained to predict a specific outcome, such as
the presence of coronary disease. Unsupervised machine
learning algorithms are not trained to predict specific
outcomes. Instead, these algorithms learn and label
inherent structures within the data.12 These techniques
can be used to identify clusters, or groups, within a
dataset without any preconceptions about the number of
groups or which variables are important. These algo-
rithms are not trained to predict specific outcomes, and
thus can be developed or updated without waiting for
long-term clinical follow-up; however, the resulting phe-
notypes frequently have important clinical implications.
For example, unsupervised learning has been used to
identify three distinct phenotypes of patients with heart
failure with preserved ejection fraction, and the risks for
atherosclerotic and heart failure-related outcomes differ
significantly between groups.13

We applied an unsupervised machine learning
model to identify phenotypes among patients with
normal myocardial perfusion by expert visual interpre-
tation on clinically indicated MPI. We then examined
www.thelancet.com Vol 99 January, 2024
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the patient characteristics of these clusters and evaluated
their associations with death or myocardial infarction
using a large, international, multicenter registry (10
centers) with dedicated training and external testing
populations.
Methods
Study design and setting
We included consecutive patients undergoing clinically
indicated single photon emission computed tomogra-
phy MPI between 2009 and 2021 from the international,
multicenter, REFINE-SPECT registry.14 The overall
study protocol has been described in detail previously.14

Data for REFINE-SPECT is collected locally and then de-
identified prior to transfer to the core laboratory. At the
core laboratory data elements undergo quality assurance
processes before integration into the overall registry.
Once the data was checked for completion (including
the verification of the code match and the check of
clinical data against image data), the imaging results
and clinical data were merged using Python software
version 3.9.3 (Willmington, DE, USA) and integrated
into a PostgreSQL database version 14.0 (Philadelphia,
PA, USA).

Participants
Patient inclusions and exclusions are shown in Fig. 1
and Supplemental Table S1. After excluding patients
without stress imaging (n = 16), follow-up for clinical
events (n = 71), and patients with abnormal perfusion
by expert visual interpretation (n = 14,836), 22,377
patients were included in the analysis. Abnormal vi-
sual interpretation of perfusion was defined as sum-
med stress score >0 or reader diagnosis other than
normal if summed stress scores were not available.3

Visual interpretation was performed at the time of
clinical reporting (multiple physicians per site), with
knowledge of patient features, including medical his-
tory and presenting symptoms. The final patient
population was divided a priori by site into an internal
cohort for algorithm development (n = 9849 from 4
sites) and an external cohort for testing (n = 12,528
from 6 sites). External testing is critical to evaluate the
potential performance of the unsupervised learning
model when applied in new sites, previously unseen
by the model.

Clinical information
Demographic information and past medical history was
collected by each site at the time that MPI was per-
formed. The collected variables that were used in this
study are outlined in Supplemental Table S2.

Scan acquisition and interpretation
All scans were acquired according to existing guidelines
for clinical purposes, with details available in the
www.thelancet.com Vol 99 January, 2024
supplement. Details of the automated analysis for
quantification of perfusion, functional parameters,
phase analysis,15 and shape index16 are available in the
supplement.

Clinical outcomes
The primary objective of the unsupervised machine
learning approach was to group data into clusters. We
then evaluated the associations with death or non-fatal
myocardial infarction to assess the potential impor-
tance of the clusters. Details of the method for ascer-
taining events at each site are available in the
Supplemental Materials. All non-fatal myocardial
infarction events were adjudicated by experienced phy-
sicians using standard criteria.

Unsupervised machine learning
Unsupervised cluster analysis was implemented using
Python (Version 3.9.7) with clinical information (23 pa-
rameters), stress parameters (12 parameters), image
acquisition parameters (5 parameters), and quantitative
image analysis parameters (20 parameters, Supplemental
Table S2). We also evaluated a model that incorporated
only the 20 image analysis parameters. Cardiovascular
events and mortality were not used in fitting the unsu-
pervised model. Missing variables were imputed using
median imputation for continuous, and mode imputa-
tion for categorical variables across the whole population.
Variables with >25% missingness in the internal cohort
were dropped during preprocessing. The analysis was
performed blinded to patient outcomes.

Dimensionality reduction was performed using the
non-linear Uniform Manifold Approximation and Pro-
jection package (UMAP Learn, Version 0.5.2).17

Dimensionality reduction improves the performance
of cluster analysis by simplifying the input feature space
prior to clustering, reducing computation time and
noise, while preserving the global data structure (i.e., the
relative relationship between patients in the data).17

UMAP was specifically selected as the primary engine
for our unsupervised pipeline as it utilizes non-linear
manifold approximation theory to estimate a low-
dimensional representation in a more efficient and
scalable manner than principal component analysis and
t-distributed stochastic neighbor embedding (t-SNE),
while retaining a stable model representation that is
viable for clinical deployment.17 Cao et al. demonstrated
the robustness of UMAP to embed high dimensional
data from cellular biology into a new representation,
leading to fewer clusters than t-SNE.18 Due to its success
with higher-dimensional data, such as that available
with MPI (clinical, stress, and imaging features avail-
able), we utilized UMAP.

In the interest of robust model selection and hyper-
parameter search, all UMAP models were tested and
validated with three different clustering algorithms (hi-
erarchical, k-means, gaussian mixture model; Scikit-
3
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Fig. 1: Population flow diagram outlining patient inclusions and exclusions. Visual normal perfusion was defined as summed stress score of zero
or expert reader interpretation of normal if summed stress score was not available. Refer to Supplemental Table S1 for a per-site exclusions
summary.
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Learn package, Version 1.0.1). The gaussian mixture
model algorithm was utilized in the best-performing
pipeline from internal cohort training. However, to
investigate the impact of clustering algorithm choice, we
compared the clustering performance of hierarchical, k-
means, gaussian mixture model clustering using the
best-performing UMAP model from internal testing
(Supplemental Table S3).

A grid search was used to optimize the dimension-
ality reduction parameters, clustering method, and
number of clusters (Supplemental Table S4). The
optimal combination of parameters was selected based
on the silhouette score. Silhouette scores provide a
metric to assess how well clusters are separated, by
assessing the separation distance of individuals between
different clusters compared to distance within a cluster.
Silhouette score is similar to other cluster-comparison
metrics, such as the Davies-Bouldin and Calinski-
Harabasz indices, with the advantage of providing
built-in normalization that makes it ideal for comparing
between unique model evaluations.19 This process
determined an optimized unsupervised clustering
method, which uses the Bray–Curtis distance metric for
dimensionality reduction with UMAP and gaussian
mixture model clustering (optimal parameters in
Supplemental Table S4). The optimal model had four
distinct clusters, Supplemental Figure S1, which were
used for phenotype and outcome assessment in the
training and testing populations. The image-only cluster
model identified two clusters as the optimal number,
but with lower Silhouette score (0.670).

To validate the outcome assessment, the unsuper-
vised clustering model was deployed in the external
cohort. To infer cluster assignments during validation,
the trained dimensionality reduction model maps indi-
vidual patients into the embedding space, and cluster
assignments are provided based on the nearest cluster
centroids recorded during training. A hierarchical clus-
tering algorithm was applied to the cluster assignments
to generate a dendrogram based on distances in
Euclidean space.

Stability analysis
The overall stability of the cluster model was assessed by
evaluating the classification of patients across boot-
strapped patient groups from the training population.
Bootstrapping was performed 100 times with 100 pa-
tients from the external testing population in each
sample to strenuously evaluate the reclassification of
samples from the external testing population. Jaccard
www.thelancet.com Vol 99 January, 2024
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index and adjusted Rand index were used to quantify
multiclass reclassification accuracy.20,21

Model explainability
In order to address the black box nature of the unsu-
pervised cluster analysis, we applied Shapley additive
explanations (SHAP) to determine which variables
contributed most to the cluster assignments.22 In this
analysis, we determined SHAP values (which reflect the
relative contribution of a variable to the overall model)
for the cluster model developed in the training
population.

Statistics
Normally distributed data are presented with mean and
standard deviation. Data that are not normally distrib-
uted are presented as median and interquartile range
(IQR). Categorical data are presented as number and
percentage. Statistical significance was assessed using
Mann–Whitney Wilcoxon, Kruskal–Wallis rank sum, or
Pearson’s chi-squared test. The study employed an
opportunistic sample size since the data was already
available. We included all eligible patients from the
REFINE SPECT registry to ensure a large, representa-
tive population was available for model training and
testing. The hypergeometric distribution v-test (R,
Version 4.1.1; FactoMineR package, Version 2.4) was
performed to assess the representation of variables
within each cluster, with a positive v-test score indi-
cating over-representation of the variable within the
cluster and a negative v-test score indicating under-
representation.23

Cox proportional hazards analysis was used to assess
associations with death or non-fatal myocardial infarc-
tion using hazard ratios (HR) and 95% confidence in-
tervals (CI). We compared the risk associated with
clusters to traditional risk factors, including diabetes,
previous MI, and pharmacologic stress. We also evalu-
ated for possible difference by sex. Additionally, we
evaluated the independent prognostic significance of the
Clusters after adjusting for typical clinical variables,
including age, sex, medical history (hypertension, dia-
betes, dyslipidemia, known coronary disease), and stress
perfusion abnormality. We also evaluated the indepen-
dent prognostic value compared to an extended multi-
variable model in the external testing population.
Variables were selected based on known clinical
importance, with no dedicated model building per-
formed. The two models were evaluated to assess the
independent importance of the Clusters, which would
allow for appropriate adjustment while minimizing
multicollinearity, since variables are incorporated into
the clusters. In the multivariable models, we evaluated
differences in the associations between cluster and
outcomes, as a function of site, using interaction terms.
The benefit of including the cluster model with the
extended multivariable model was evaluated with
www.thelancet.com Vol 99 January, 2024
improvement in model fit using likelihood ratio chi-
square and patient classification using continuous net-
reclassification index. Kaplan–Meier curves were used
to visualize rates of the composite outcome. A two-sided
p value < 0.05 was considered statistically significant.
Analyses were performed using Stata version 14.2
(StataCorp, College Station, Texas) and R 4.1.1.

Ethics approval and reporting guidelines
This study complied with the Declaration of Helsinki
and was approved by the institutional review boards at
each participating institution, with the overall study
approved at Cedars-Sinai Medical Center (REB ID #
Pro00019604). This study was designed and conducted
following the Proposed Requirements for Cardiovascu-
lar Imaging–Related Machine Learning Evaluation,24

with the checklist included as Supplemental Table S5.

Role of funders
This work was supported by the National Heart, Lung,
and Blood Institute at the National Institutes of Health
[R35HL161195 to PS]. The REFINE SPECT database
was supported by the National Heart, Lung, and Blood
Institute at the National Institutes of Health
[R01HL089765 to PS]. MCW was supported by the
British Heart Foundation [FS/ICRF/20/26002]. The
study funders had no role in study design; in the
collection, analysis, and interpretation of data; in the
writing of the report; nor in the decision to submit the
paper for publication. The authors were not precluded
from accessing data in the study, and they accept re-
sponsibility for publication.
Results
Patient population
A total of 9849 patients were included in the training
population and 12,528 patients in the external testing
population. An overview of the study findings is shown
in Fig. 2. Population characteristics are outlined in
Table 1. There were statistically significant differences
in characteristics between the external testing and
training populations, including older age (median 65 vs
63, p < 0.001) and a higher proportion of patients un-
dergoing pharmacologic stress (48.5% vs 43.6%,
p < 0.001) in the external testing population. Overall,
0.55% of values were missing in the training population
and 1.51% in the external population, with details in
Supplemental Table S6.

Training population
The algorithm identified four distinct clusters. These
four clusters were used for phenotype and outcome
assessment in the training and testing populations.
Characteristics of the clusters in the training population
are outlined in Table 2 and the embedding space com-
ponents are visualized in Fig. 3. Patients in Clusters 1
5
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Fig. 2: Overview of study design and findings. Unsupervised machine learning was used to identify four unique clusters of patients with normal
myocardial perfusion. Patients in the highest risk cluster had 6-fold higher risk of death or myocardial infarction in the training and external
testing populations.
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and 2 were more likely to have completed exercise stress
(89%) compared to patients in Clusters 3 or 4 (0.0%,
p < 0.001). Patients in Cluster 2 were more likely to have
an ischemic clinical response to stress (chest pain) (42.0
vs 0.1%, p < 0.001) and stress perfusion abnormality
>5% (7.7% vs 3.3%, p < 0.001) compared to Cluster 1.
However, phase bandwidth was lower in Cluster 2
compared to Cluster 1 (median 24 vs 30, p < 0.001).
Patients in Cluster 4 were more likely to have stress
perfusion abnormality >5% (15.0% vs 4.4%, p < 0.001),
left ventricular dilation (14.7% vs 10.3%, p < 0.001), and
left ventricular ejection fraction <50% (6.4% vs 1.5%,
p < 0.001) compared to Cluster 3. The model’s silhou-
ette score was 0.881 (Supplemental Figure S1). Further
differences in quantitative perfusion parameters be-
tween clusters are visualized in Supplemental
Figure S2A–L. Shapley additive explanation values for
variables in the training population are shown in Fig. 4.

During a median follow-up of 5.3 (IQR 4.2–6.5)
years, 801 (8.1%) patients experienced at least one event,
including a total of 715 deaths (7.3%) and 106 non-fatal
myocardial infarctions (1.1%). Kaplan–Meier curves for
death or myocardial infarction in the training popula-
tion, stratified by cluster, are shown in Fig. 5. Patients in
Cluster 4 were at the highest risk (HR 5.94, 95% CI
4.40–8.03) followed by Cluster 3 (HR 3.53, 95% CI
2.49–5.00), Cluster 2 (HR 1.82, 95% CI 1.33–2.49), and
Cluster 1 (reference group, p < 0.001 for all compari-
sons). The risk associated with Cluster 4 was similar in
female (HR 6.80, 95% CI 4.19–11.0) and male patients
(HR 5.72, 95% CI 3.88–8.42; interaction p-value 0.503).
In the multivariable model (Supplemental Table S7),
patients in Cluster 4 were still at statistically significantly
higher risk than patients in Cluster 1 (adjusted HR 4.37,
95% CI 3.21–5.94, p < 0.001).

External testing population
Characteristics of the four clusters in the external testing
population are outlined in Table 3, and the embedding
space components are visualized in Fig. 3. The silhou-
ette width in the external population was 0.852, sug-
gesting that patients continued to be categorized into
www.thelancet.com Vol 99 January, 2024
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Training
population
N = 9849

External testing
population
N = 12,528

Age 63 (54–71) 65 (57–73)

Male 4657 (47.3%) 6141 (49.0%)

Body mass index 28.1 (25.0, 32.2) 27.9 (24.8, 32.0)

Past medical history

Past myocardial infarction 539 (5.5%) 839 (6.7%)

Past PCI or Stents 1032 (10.5%) 999 (8.0%)

Past CABG 390 (4.0%) 341 (2.7%)

Hypertension 6087 (61.8%) 7657 (61.1%)

Diabetes Mellitus 2326 (23.6%) 2886 (23.0%)

Dyslipidemia 5868 (59.6%) 4952 (39.5%)

Family History 2868 (29.1%) 5100 (40.7%)

Presenting symptoms

Typical chest pain 509 (5.1%) 369 (3.1%)

Atypical chest pain 2314 (23.5%) 5137 (41.0%)

Location

Emergency 394 (4.0%) 509 (4.4%)

Inpatient 884 (9.0%) 1305 (11.4%)

Outpatient 8570 (87%) 9648 (84.2%)

Mode of stress

Exercise 5558 (56.4%) 6449 (51.5%)

Pharmacologic 4291 (43.6%) 6077 (48.5%)

Clinical response to stress

Abnormal 388 (4.0%) 314 (2.5%)

Equivocal/Non-diagnostic 1427 (14.8%) 862 (6.9%)

Ischemic 2384 (24.2%) 418 (3.3%)

Non-Ischemic 5605 (57.0%) 10,934 (87.3%)

Continuous variables presented as median (interquartile range) and categorical
variables as number (proportion). CABG—coronary artery bypass grafting, ECG—
electrocardiogram, PCI—percutaneous coronary intervention.

Table 1: Population characteristics for the training and external
testing populations.

Articles
distinct classes using the previously trained model. Pa-
tients in clusters 1 and 2 were more likely to have
completed exercise stress (96.2%, p < 0.001) compared
to patients in clusters 3 or 4 (0.2%, p < 0.001). Patients
in Cluster 2 were more likely to have left ventricular
ejection fraction <50% (7.6% vs 3.7%, p < 0.001)
compared to Cluster 1. Patients in Cluster 3 were more
likely to present with typical (5.7% vs 0.1%, p < 0.001) or
atypical chest pain (53.8% vs 36.6%, p < 0.001). Patients
in Cluster 4 had higher median BMI compared to
Cluster 3 (30 vs 27, p < 0.001), were more likely to have
left ventricular dilation (19.3% vs 11.1%, p < 0.001),
and left ventricular ejection fraction <50% (7.2% vs
5.9%, p = 0.047). Further differences in quantitative
perfusion parameters between clusters are shown in
Supplemental Figure 3A–L.

During median follow-up of 3.1 (IQR 2.3–3.6) years,
590 (4.7%) patients experienced at least one event,
including a total of 438 deaths (3.5%) and 173 non-fatal
myocardial infarctions (1.4%). Kaplan–Meier curves for
death or non-fatal myocardial infarction in the testing
www.thelancet.com Vol 99 January, 2024
population are shown in Fig. 6. Patients in Cluster 4
were at the highest risk (HR 6.17, 95% CI 4.64–8.20)
followed by Cluster 3 (HR 3.56, 95% CI 2.67–4.74),
Cluster 2 (HR 2.18, 95% CI 1.59–2.99), and Cluster 1
(reference group, p < 0.001 for all comparisons). The
risk associated with Cluster 4 was similar in female (HR
6.51, 95% CI 4.12–10.3) and male patients (HR 6.78,
95% CI 4.70–9.79; interaction p-value 0.906). For com-
parison, the risk associated with diabetes (HR 1.68, 95%
CI 1.42–2.00), pharmacologic stress (HR 3.03, 95% CI
2.53–3.63), and previous MI (HR 1.82, 95%
CI 1.40–2.36) were all lower than the risk associated
with Cluster 4 vs Cluster 1.

In the multivariable analysis, patients in Cluster 4
were at statistically significantly higher risk than pa-
tients in Cluster 1 (adjusted HR 5.23, 95% CI 3.91–6.99,
p < 0.001). Clusters 2 and 4 were associated with an
increased risk of adverse events in a more extensive
multivariable model (Supplemental Table S8). Including
the clusters also improved model fit (increase in LR chi-
square 68.9, p < 0.001) and patient classification
(continuous net reclassification index 0.213, 95% CI
0.131–0.295).

Stability analysis
Supplemental Table S3 shows the result of clustering
embeddings from the optimal, trained UMAP model for
the three clustering algorithms. We observed similar
silhouette scores from all three clustering algorithms for
the internal cohort at four clusters, highlighting the
stability of the selected model.

The Jaccard index and adjusted Rand index demon-
strated good stability with respect to patient classifica-
tion with values of 0.993 ± 0.011 and 0.991 ± 0.016,
respectively, where a value of 1 represents perfect
agreement in patient classification across all boot-
strapped samples. We also evaluated the absolute dis-
tance from assigned clusters using Euclidean distance,
as shown in Supplemental Figure S4. There was a
similar proportion of patients classified as outliers
(defined as Euclidean distance >3 standard deviations
above the mean) in the internal (6.8%) and external
populations (5.9%). A dendrogram is presented in
Supplemental Figure S5. Results for the imaging-only
analysis are available in the Supplemental Results and
Supplemental Figure S6.
Discussion
Leveraging unsupervised machine learning tech-
niques, we identified four distinct phenotypes among
patients with normal myocardial perfusion, with clear
differences between groups in both internal and
external populations. While many characteristics
differed, the use of exercise vs pharmacologic stress
was the most important variable for splitting the low-
risk from high-risk groups. Importantly, despite
7
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Cluster 1 N = 2097 Cluster 2 N = 4148 Cluster 3 N = 1165 Cluster 4 N = 2439

Age 61 (53, 67) 60 (51, 68) 69 (63, 77) 65 (56, 74)

Male 1072 (51%) 2167 (52%) 421 (36%) 997 (41%)

Body mass index 27 (25, 29) 28 (25, 33) 28 (25, 31) 30 (25, 36)

Past medical history

Past myocardial infarction 70 (3.3%) 215 (5.2%) 56 (4.8%) 198 (8.1%)

Past PCI or Stents 215 (10%) 384 (9.3%) 177 (15%) 256 (10%)

Past CABG 49 (2.3%) 167 (4.0%) 58 (5.0%) 116 (4.8%)

Hypertension 1003 (48%) 2419 (58%) 841 (72%) 1824 (75%)

Diabetes Mellitus 419 (20%) 779 (19%) 331 (28%) 797 (33%)

Dyslipidemia 1285 (61%) 2370 (57%) 793 (68%) 1420 (58%)

Family History 635 (30%) 1461 (35%) 203 (17%) 569 (23%)

Presenting symptoms

Typical chest pain 25 (1.2%) 338 (8.2%) 24 (2.1%) 122 (5.0%)

Atypical chest pain 240 (11.4%) 1160 (28.0%) 143 (12.3%) 771 (31.6%)

Location

Emergency 0 (0%) 297 (7.2%) 0 (0%) 97 (4.0%)

Inpatient 0 (0%) 381 (9.2%) 0 (0%) 503 (21%)

Outpatient 2097 (100%) 3470 (84%) 1165 (100%) 1838 (75%)

Mode of stress

Exercise 2097 (100%) 3461 (83%) 0 (0%) 0 (0%)

Pharmacologic 0 (0%) 687 (17%) 1165 (100%) 2437 (100%)

Clinical response to stress

Abnormal 43 (2.2%) 298 (7.4%) 42 (3.9%) 5 (0.3%)

Equivocal/Non-Diagnostic 1 (<0.1%) 208 (5.1%) 0 (0%) 314 (17%)

Ischemic 2 (0.1%) 1700 (42%) 6 (0.6%) 676 (38%)

Non-Ischemic 1915 (98%) 1844 (46%) 1041 (96%) 805 (45%)

Outcomes

Death 32 (1.5%) 220 (5.3%) 76 (6.5%) 387 (16%)

Myocardial Infarction 16 (0.8%) 29 (0.7%) 17 (1.5%) 44 (1.8%)

Continuous variables presented as median (interquartile range) and categorical variables as number (proportion). CABG—coronary artery bypass grafting, ECG—
electrocardiogram, PCI—percutaneous coronary intervention.

Table 2: Patient characteristics in each of the clusters in the training population.
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having normal myocardial perfusion, patients in
Cluster 4 had a 6-fold higher risk of death or non-fatal
myocardial infarction, compared to patients in Cluster
1. The risk associated with this large cluster (>20% of
patients) was substantially higher compared to tradi-
tional clinical subgroups such as history of diabetes or
previous myocardial infarction. Such artificial
intelligence-based clustering could be used clinically to
improve classification of ∼90% of the 15–20 million
scans performed annually.1 Physicians could be pre-
sented with a patient’s cluster assignment in
conjunction with the MPI report, potentially allowing
them to target aggressive therapies more accurately in
the highest risk groups and provide additional reas-
surance to the lowest risk groups.

The unsupervised model identified 4 patient clusters,
which provided optimal differentiation between groups.
Importantly, our study is one of very few to demonstrate
that these differences are maintained when the trained
model is applied to an external testing population. Two
of the clusters (Clusters 1 and 2) were primarily made
up of patients who were able to complete exercise stress,
while the remaining two (Clusters 3 and 4) comprised
patients who almost exclusively required pharmacologic
stress. Similarly, 13 of the top 24 features determining
cluster assignment were related to the mode of stress.
This is likely because other features, such as peak stress
heart rate and blood pressure, are directly related to the
mode of stress. Regardless, this finding confirms the
known importance of a patient’s ability to complete ex-
ercise stress.26 Aside from stress modality, there were
smaller differences in traditionally important clinical
parameters such as diabetes8 or previous myocardial
infarction.9 In the external testing set, patients in Cluster
3 were more likely to be presenting with typical or
atypical chest pain. We also noted statistically significant
differences in markers of ventricular morphology be-
tween clusters, such as higher stress shape index in
Cluster 4 and Cluster 2 compared to Cluster 3 and
Cluster 1. The differences in shape index could help
www.thelancet.com Vol 99 January, 2024
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Fig. 3: Training and external testing populations projected into the reduced embedding space. Components of the embedding space are in-
dependent summary measures that combine multiple input parameters, which are determined by the non-linear dimensionality reduction
process. There is a clear separation of groups in the training population with Silhouette score of 0.881. In the external testing population, there
is still separation between groups, but with a few outliers, the Silhouette score was 0.852.

Articles
explain differences in risk between clusters.16 However,
the variation seen in other image parameters like phase
bandwidth differed in a way that would be expected to
decrease the risk associated with the highest risk clus-
ter.15 There were minor discrepancies in stress perfu-
sion abnormalities, with differences potentially
minimized by only including patients with visually
normal perfusion. Additionally, clusters were less
distinct when we applied the same process to imaging
variables alone. Such complex variations of multiple
clinical and imaging variables could not be easily
captured with standard clinical rules. It may be more
practical for clinical use to reference risk phenotypes, in
this case a patient’s cluster assignment, instead of
listing multiple individual features for risk predictions.
Overall, these findings highlight the potential value of
comprehensive patient phenotyping, using unsuper-
vised learning, for patient classification and risk
prediction.

Unsupervised learning represents a potentially
valuable artificial intelligence technique which has not
been frequently applied to cardiac imaging.27–29 Unsu-
pervised algorithms learn and label inherent relation-
ships or structure within data,12 allowing identification
of groups without preset expectations. A key potential
benefit of using unsupervised learning to phenotype
patients is that patients are characterized using fea-
tures readily available at the time of study reporting.
There have been a few recent applications of unsu-
pervised approaches in cardiac imaging. Lancaster
et al. identified clusters of patients with a higher risk of
death among 866 patients undergoing echocardiogra-
phy.30 Krohn et al. applied unsupervised learning to
www.thelancet.com Vol 99 January, 2024
identify phenotypes among patients undergoing inva-
sive coronary angiography.31 Shah et al. applied hier-
archical cluster analysis to identify 3 clusters among
397 patients with heart failure preserved ejection
fraction undergoing echocardiography.32 The authors
went on to demonstrate that the risk of heart failure
hospitalization associated with different clusters in a
separate internal testing group (n = 107).32 Importantly,
we demonstrate unsupervised learning in a substan-
tially larger number of patients from an international
registry including 10 sites and reproduced the results
in an external (previously unseen by the trained model)
population from independent centers. External testing
is critical for unsupervised learning because some
imaging data is related to site-specific protocols for
training; for example, stress dose is related to the use
of stress-first or stress-only imaging. The fact that
clustering maintains performance in a large external
and multi-center testing cohort suggests that our
approach could be applied to most (over 90% in some
cohorts5) of the 15–20 million cardiac perfusion scans
performed annually worldwide,1 of which a vast pro-
portion have normal results.

Our approach can help physicians identify important
subgroups within the population of patients with
normal myocardial perfusion. This is a critical popula-
tion to study because these patients are often assigned
the same risk estimate unless other markers of
increased risk are present. Importantly, outcomes have
not been used at any point during data training, unlike
in traditional machine learning or statistical analysis
with survival models. It is possible that patients in the
clusters have distinct underlying disease processes or
9
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Fig. 4: Shapley additive explanation (SHAP) values for the top 24 features and all remaining features were generated using the Cluster-Shapley
method.25 ECG—electrocardiogram, MPHR—maximum predicted heart rate.
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other unmeasured variables that may be leading to the
classifications. For example, frailty may be an important
confounding factor, which plays an important role in
leading patients to require pharmacologic stress and
would be associated with cardiovascular events. The
prevalence of non-perfusion high-risk markers, such as
impaired left ventricular systolic function,10 is relatively
low in this patient population. Additionally, the signifi-
cance of findings such as transient ischemic dilation has
been called into question in this population.33 Tradi-
tionally, physicians have relied on other clinical features,
such as medical history, to identify potentially higher
risk patients; however, the associated risk for Cluster 4
in our study was higher than the risk associated with
features such as requirement for pharmacologic stress
or diabetes. The unsupervised approach is efficiently
combining some of these important features, removing
the need for clinicians to attempt to integrate all this
information on their own.
Study limitations
Our study is not without its limitations. We do not have
information on how physicians responded to MPI re-
sults and changes in therapy in response to clinical or
imaging features. If physicians reacted to specific fea-
tures this would bias our estimate of associations with
outcomes. Unsupervised learning is specifically
designed to identify distinct patient phenotypes and is
not optimized to provide stratification for a specific
outcome as they are not used for model training.
However, we included this analysis to demonstrate the
potential clinical application of this approach. In com-
parison, supervised approaches depend on the avail-
ability and quality of outcome data in the training set but
do not establish patient phenotypes. We utilized UMAP
for dimensionality reduction, and it is possible that
different optimal clusters would be identified if another
reduction approach was used; however, we verified that
the number of clusters was similar across downstream
www.thelancet.com Vol 99 January, 2024
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Fig. 5: Kaplan–Meier curves for death or myocardial infarction in the training population. The radial plots visualize differences between clusters
compared to the entire training population (inside/outside of orange circle). A higher proportion of patients, or larger values, is identified as an
over-represented trait (outside). The opposite is true for an under-represented trait (inside). Hazard ratio (HR) and 95% confidence intervals are
shown for each Cluster compared to Cluster 1. LVEDV—left ventricular end-diastolic volume, LVEF—left ventricular ejection fraction, TPD—total
perfusion deficit.

Articles
clustering methods. UMAP performance is dependent
on hyperparameter optimization according to the target
dataset. In this study, we carried out an extensive grid
search to optimize model performance for our training
data, and we recommend a similarly robust search be
carried out if extending this approach to new applica-
tions. We utilized Shapley additive explanation values to
identify the most important features leading to cluster
assignments, which could also be utilized for patient-
specific explanations. We do not have information
regarding serial changes in perfusion or ventricular
function, which may be relevant for identifying impor-
tant subgroups of patients.34 We included patients from
separate centers and some clinical features, such as the
use of exercise vs pharmacologic stress, vary between
sites. This is particularly evident when comparing the
training and external testing populations, where statis-
tically significant differences were present in almost all
clinical features. Indeed, this variation in population
characteristics is critical for external validation to ensure
results are broadly generalizable and the model can be
applied to unseen centers. While the overall proportion
of missing values was small, imputation of missing
values may have decreased the differences between
groups. Lastly, there was a difference in follow-up
duration between sites, as evidenced by changes in pa-
tients at risk over time on the Kaplan–Meier curves.
However, this heterogeneity increases the generaliz-
ability of our findings, as demonstrated by the robust
results in external testing, which is a critical step for any
www.thelancet.com Vol 99 January, 2024
model.35 Lastly, we used all-cause mortality as part of the
outcome, and results may have been different if car-
diovascular mortality was used.

Conclusion
Unsupervised learning identified four patient pheno-
types among patients with normal myocardial perfu-
sion. Using a large, multicenter, international external
testing population, these clusters identified patients
with substantially higher risk of death or myocardial
infarction compared to traditional predictors. Our re-
sults suggest a potential role for patient phenotyping to
improve risk stratification of patients with normal im-
aging results.
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Cluster 1 N = 3457 Cluster 2 N = 3237 Cluster 3 N = 3299 Cluster 4 N = 2535

Age 63 (55, 70) 61 (53, 69) 69 (61, 76) 68 (59, 75)

Male 1850 (54%) 1767 (55%) 1546 (47%) 978 (39%)

Body mass index 28 (25, 31) 28 (25, 32) 27 (24, 30) 30 (26, 35)

Past medical history

Past myocardial infarction 200 (5.8%) 159 (4.9%) 385 (12%) 95 (3.7%)

Past PCI or Stents 233 (6.7%) 230 (7.1%) 377 (11%) 159 (6.3%)

Past CABG 86 (2.5%) 70 (2.2%) 112 (3.4%) 73 (2.9%)

Hypertension 1874 (54%) 1677 (52%) 2353 (71%) 1753 (69%)

Diabetes Mellitus 703 (20%) 561 (17%) 823 (25%) 816 (32%)

Dyslipidemia 827 (24%) 1403 (43%) 1728 (52%) 994 (39%)

Family History 1811 (52%) 1316 (41%) 1340 (41%) 633 (25%)

Smoking 1290 (37%) 595 (18%) 1438 (44%) 661 (26%)

Presenting symptoms

Typical chest pain 91 (3.1%) 97 (3.0%) 179 (5.7%) 2 (0.1%)

Atypical chest pain 1175 (39.5%) 1389 (43.2%) 1680 (53.8%) 893 (36.6%)

Location

Emergency 30 (0.9%) 220 (12%) 18 (0.6%) 241 (13%)

Inpatient 199 (5.9%) 101 (5.5%) 429 (15%) 135 (7.1%)

Outpatient 3159 (93%) 1500 (82%) 2461 (85%) 1516 (80%)

Mode of Stress

Exercise 3389 (98%) 3050 (94%) 5 (0.2%) 5 (0.2%)

Pharmacologic 68 (2.0%) 185 (5.7%) 3294 (>99%) 2530 (>99%)

Clinical response to stress

Abnormal 75 (2.2%) 196 (6.3%) 3 (<0.1%) 40 (1.7%)

Equivocal/Non-Diagnostic 34 (1.0%) 241 (7.8%) 36 (1.1%) 103 (4.4%)

Ischemic 226 (6.7%) 110 (3.6%) 20 (0.6%) 62 (2.7%)

Non-Ischemic 3044 (90%) 2543 (82%) 3234 (98%) 2113 (91%)

Outcomes

Death 35 (1.0%) 81 (2.5%) 164 (5.0%) 158 (6.2%)

Myocardial Infarction 27 (1.9%) 31 (1.0%) 46 (1.6%) 69 (3.9%)

Continuous variables presented as median (interquartile range) and categorical variables as number (proportion). CABG—coronary artery bypass grafting, ECG—
electrocardiogram, PCI—percutaneous coronary intervention.

Table 3: Patient characteristics in each of the clusters in the external testing population.
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Fig. 6: Kaplan–Meier curves for death or myocardial infarction in the external testing population. The radial plots visualize differences between
clusters compared to the entire external testing population (inside/outside of orange circle). A higher proportion of patients, or larger values, is
identified as an over-represented trait (outside). The opposite is true for an under-represented trait (inside). Hazard ratio (HR) and 95%
confidence intervals are shown for each Cluster compared to Cluster 1. LVEDV—left ventricular end-diastolic volume, LVEF—left ventricular
ejection fraction, TPD—total perfusion deficit.
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