17,550 research outputs found
In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties
We have developed a silver-releasing biomaterial with promising potential for wound healing applications. The material is made of ultrashort peptides which can self-assemble in water to form hydrogels. Silver nanoparticles (Ag NPs) were synthesized in situ within the biomaterial, using only UV irradiation and no additional chemical reducing agents. The synthetic strategy allows precise control of the nanoparticle size, with the network of peptide fibers preventing aggregation of Ag NPs. The biomaterial shows increased mechanical strength compared to the hydrogel control. We observed a sustained release of Ag NPs over a period of 14 days. This is a crucial prerequisite for effective anti-bacterial therapy. The ability to inhibit bacterial growth was tested using different bacterial strains, namely gram-negative Escherichia coli and Pseudomonas aeruginosa and gram-positive Staphylococcus aureus. Inhibition of bacterial growth was observed for all strains. The best results were obtained for Pseudomonas aeruginosa which is known for exhibiting multidrug resistance. Biocompatibility studies on HDFa cells, using Ag NP-containing hydrogels, did not show any significant influence on cell viability. We propose this silver-releasing hydrogel as an excellent biomaterial with great potential for applications in wound healing due to its low silver content, sustained silver nanoparticle release and biocompatibility
Collision of plane gravitational and electromagnetic waves in a Minkowski background: solution of the characteristic initial value problem
We consider the collisions of plane gravitational and electromagnetic waves
with distinct wavefronts and of arbitrary polarizations in a Minkowski
background. We first present a new, completely geometric formulation of the
characteristic initial value problem for solutions in the wave interaction
region for which initial data are those associated with the approaching waves.
We present also a general approach to the solution of this problem which
enables us in principle to construct solutions in terms of the specified
initial data. This is achieved by re-formulating the nonlinear dynamical
equations for waves in terms of an associated linear problem on the spectral
plane. A system of linear integral ``evolution'' equations which solve this
spectral problem for specified initial data is constructed. It is then
demonstrated explicitly how various colliding plane wave space-times can be
constructed from given characteristic initial data.Comment: 33 pages, 3 figures, LaTeX. Accepted for publication in Classical and
Quantum Gravit
Observables for spacetimes with two Killing field symmetries
The Einstein equations for spacetimes with two commuting spacelike Killing
field symmetries are studied from a Hamiltonian point of view. The complexified
Ashtekar canonical variables are used, and the symmetry reduction is performed
directly in the Hamiltonian theory. The reduced system corresponds to the field
equations of the SL(2,R) chiral model with additional constraints.
On the classical phase space, a method of obtaining an infinite number of
constants of the motion, or observables, is given. The procedure involves
writing the Hamiltonian evolution equations as a single `zero curvature'
equation, and then employing techniques used in the study of two dimensional
integrable models. Two infinite sets of observables are obtained explicitly as
functionals of the phase space variables. One set carries sl(2,R) Lie algebra
indices and forms an infinite dimensional Poisson algebra, while the other is
formed from traces of SL(2,R) holonomies that commute with one another. The
restriction of the (complex) observables to the Euclidean and Lorentzian
sectors is discussed.
It is also shown that the sl(2,R) observables can be associated with a
solution generating technique which is linked to that given by Geroch.Comment: 23 pages (LateX-RevTeX), Alberta-Thy-55-9
Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations
For the fields depending on two of the four space-time coordinates only, the
spaces of local solutions of various integrable reductions of Einstein's field
equations are shown to be the subspaces of the spaces of local solutions of the
``null-curvature'' equations constricted by a requirement of a universal (i.e.
solution independent) structures of the canonical Jordan forms of the unknown
matrix variables. These spaces of solutions of the ``null-curvature'' equations
can be parametrized by a finite sets of free functional parameters -- arbitrary
holomorphic (in some local domains) functions of the spectral parameter which
can be interpreted as the monodromy data on the spectral plane of the
fundamental solutions of associated linear systems. Direct and inverse problems
of such mapping (``monodromy transform''), i.e. the problem of finding of the
monodromy data for any local solution of the ``null-curvature'' equations with
given canonical forms, as well as the existence and uniqueness of such solution
for arbitrarily chosen monodromy data are shown to be solvable unambiguously.
The linear singular integral equations solving the inverse problems and the
explicit forms of the monodromy data corresponding to the spaces of solutions
of the symmetry reduced Einstein's field equations are derived.Comment: LaTeX, 33 pages, 1 figure. Typos, language and reference correction
Recommended from our members
Rotational 3D Printing of Sensor Devices using Reactive Ink Chemistries
This paper charts progress in three key areas of a project supported by both UK
government and UK industry to manufacture novel sensor devices using rotary 3D printing
technology and innovative ink chemistries; (1) the development of an STL file slicing algorithm
that returns constant Z height 2D contour data at a resolution that matches the given print head
setup, allowing digital images to be generated of the correct size without the need for scaling;
(2) the development of image transformation algorithms which allow images to be printed at
higher resolutions using tilted print heads and; (3) the formulation of multi part reaction inks
which combine and react on the substrate to form solid material layers with a finite thickness. A
Direct Light Projection (DLP) technique demonstrated the robustness of the slice data by
constructing fine detailed three dimensional test pieces which were comparable to identical parts
built in an identical way from slice data obtained using commercial software. Material systems
currently under investigation include plaster, stiff polyamides and epoxy polymers and
conductive metallic’s. Early experimental results show conductivities of silver approaching
1.42x105 Siemens/m.Mechanical Engineerin
Einstein's equations and the chiral model
The vacuum Einstein equations for spacetimes with two commuting spacelike
Killing field symmetries are studied using the Ashtekar variables. The case of
compact spacelike hypersurfaces which are three-tori is considered, and the
determinant of the Killing two-torus metric is chosen as the time gauge. The
Hamiltonian evolution equations in this gauge may be rewritten as those of a
modified SL(2) principal chiral model with a time dependent `coupling
constant', or equivalently, with time dependent SL(2) structure constants. The
evolution equations have a generalized zero-curvature formulation. Using this
form, the explicit time dependence of an infinite number of
spatial-diffeomorphism invariant phase space functionals is extracted, and it
is shown that these are observables in the sense that they Poisson commute with
the reduced Hamiltonian. An infinite set of observables that have SL(2) indices
are also found. This determination of the explicit time dependence of an
infinite set of spatial-diffeomorphism invariant observables amounts to the
solutions of the Hamiltonian Einstein equations for these observables.Comment: 22 pages, RevTeX, to appear in Phys. Rev.
Evidence of breakdown of the spin symmetry in diluted 2D electron gases
Recent claims of an experimental demonstration of spontaneous spin
polarisation in dilute electron gases \cite{young99} revived long standing
theoretical discussions \cite{ceper99,bloch}. In two dimensions, the
stabilisation of a ferromagnetic fluid might be hindered by the occurrence of
the metal-insulator transition at low densities \cite{abra79}. To circumvent
localisation in the two-dimensional electron gas (2DEG) we investigated the low
populated second electron subband, where the disorder potential is mainly
screened by the high density of the first subband. This letter reports on the
breakdown of the spin symmetry in a 2DEG, revealed by the abrupt enhancement of
the exchange and correlation terms of the Coulomb interaction, as determined
from the energies of the collective charge and spin excitations. Inelastic
light scattering experiments and calculations within the time-dependent local
spin-density approximation give strong evidence for the existence of a
ferromagnetic ground state in the diluted regime.Comment: 4 pages, 4 figures, Revte
Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2
The Ras oncogene products regulate the expression of genes in transformed cells, and members of the Ets family of transcription factors have been implicated in this process. To determine which Ets factors are the targets of Ras signaling pathways, the abilities of several Ets factors to activate Ras-responsive enhancer (RRE) reporters in the presence of oncogenic Ras were examined. In transient transfection assay, reporters containing RREs composed of Ets-AP-1 binding sites could be activated 30-fold in NIH 3T3 fibroblasts and 80-fold in the macrophage-like line RAW264 by the combination of Ets1 or Ets2 and Ras but not by several other Ets factors that were tested in the assay. Ets2 and Ras also superactivated an RRE composed of Ets-Ets binding sites, but the Ets-responsive promoter of the c-fms gene was not superactivated. Mutation of a threonine residue to alanine in the conserved amino-terminal regions of Ets1 and Ets2 (threonine 38 and threonine 72, respectively) abrogated the ability of each of these proteins to superactivate reporter gene expression. Phosphoamino acid analysis of radiolabeled Ets2 revealed that Ras induced normally absent threonine-specific phosphorylation of the protein. The Ras-dependent increase in threonine phosphorylation was not observed in Ets2 proteins that had the conserved threonine 72 residue mutated to alanine or serine. These data indicate that Ets1 and Ets2 are specific nuclear targets of Ras signaling events and that phosphorylation of a conserved threonine residue is a necessary molecular component of Ras-mediated activation of these transcription factors
- …