601 research outputs found

    High energy terahertz pulses from organic crystals: DAST and DSTMS pumped at Ti:sapphire wavelength

    Full text link
    High energy terahertz pulses are produced by optical rectification (OR) in organic crystals DAST and DSTMS by a Ti:sapphire amplifier system centered at 0.8 microns. The simple scheme provides broadband spectra between 1 and 5 THz, when pumped by collimated 60 fs near-infrared pump pulse and it is scalable in energy. Fluence-dependent conversion efficiency and damage threshold are reported as well as optimized OR at visible wavelength.Comment: 8 pages, 6 figure

    Micromachining of hardened Portland cement pastes using femtosecond laser pulses

    Get PDF
    Femtosecond laser pulses (30fs in length) of various energies were utilised for production of single and multiple overlapping ablation sites on flat polished surfaces of hardened Portland cement pastes. In order to assess the sizes of the ablation sites and possible subsurface laser-induced damage, the ablation sites were investigated using environmental scanning electron microscopy (ESEM) - both from normal top-down view and in cross-sections. Furthermore, approximately 10-µm wide notches were produced using femtosecond pulses on cylindrical microspecimens (150µm in diameter) of hardened Portland cement pastes. In addition to electron microscopy observations, several microspecimens were investigated using synchrotron-based X-ray computed microtomography (SRμCT). The results suggest that production of "damage-free” samples for micromechanical testing of hardened Portland cements pastes is possibl

    Temporal characterization of individual harmonics of an attosecond pulse train by THz streaking

    Full text link
    We report on the global temporal pulse characteristics of individual harmonics in an attosecond pulse train by means of photo-electron streaking in a strong low-frequency transient. The scheme allows direct retrieval of pulse durations and first order chirp of individual harmonics without the need of temporal scanning. The measurements were performed using an intense THz field generated by tilted phase front technique in LiNbO_3 . Pulse properties for harmonics of order 23, 25 and 27 show that the individual pulse durations and linear chirp are decreasing by the harmonic order

    Generation of 1.5-octave intense infrared pulses by nonlinear interactions in DAST crystal

    Get PDF
    Infrared pulses with large spectral width extending from 1.2 to 3.4 μ m are generated in the organic crystal DAST (4-N, N-dimethylamino-4′-N′-methylstilbazolium tosylate). The input pulse has a central wavelength of 1.5 μ m and 65 fs duration. With 2.8 mJ input energy we obtained up to 700 μ J in the broadened spectrum. The output can be easily scaled up in energy by increasing the crystal size together with the energy and the beam size of the pump. The ultra-broad spectrum is ascribed to cascaded second order processes mediated by the exceptionally large effective χ 2 nonlinearity of DAST, but the shape of the spectrum indicates that a delayed χ 3 process may also be involved. Numerical simulations reproduce the experimental results qualitatively and provide an insight in the mechanisms underlying the asymmetric spectral broadening

    Field-driven femtosecond magnetization dynamics induced by ultrastrong coupling to THz transients

    Full text link
    Controlling ultrafast magnetization dynamics by a femtosecond laser is attracting interest both in fundamental science and industry because of the potential to achieve magnetic domain switching at ever advanced speed. Here we report experiments illustrating the ultrastrong and fully coherent light-matter coupling of a high-field single-cycle THz transient to the magnetization vector in a ferromagnetic thin film. We could visualize magnetization dynamics which occur on a timescale of the THz laser cycle and two orders of magnitude faster than the natural precession response of electrons to an external magnetic field, given by the Larmor frequency. We show that for one particular scattering geometry the strong coherent optical coupling can be described within the framework of a renormalized Landau Lifshitz equation. In addition to fundamentally new insights to ultrafast magnetization dynamics the coherent interaction allows for retrieving the complex time-frequency magnetic properties and points out new opportunities in data storage technology towards significantly higher storage speed.Comment: 25 page

    Macroscopic effects in attosecond pulse generation

    Full text link
    We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of self-compressed attosecond pulses. We show this effect experimentally, using long argon-filled gas cells as generating medium.Comment: 5 pages 4 figure
    • …
    corecore