64 research outputs found

    Anodic dissolution of metals in oxide-free cryolite melts

    Get PDF
    The anodic behavior of metals in molten cryolite-alumina melts has been investigated mostly for use as inert anodes for the Hall-HĂ©roult process. In the present work, gold, platinum, palladium, copper, tungsten, nickel, cobalt and iron metal electrodes were anodically polarized in an oxide-free cryolite melt (11%wt. excess AlF3 ; 5%wt. CaF2) at 1273 K. The aim of the experiments was to characterize the oxidation reactions of the metals occurring without the effect of oxygen-containing dissolved species. The anodic dissolution of each metal was demonstrated, and electrochemical reactions were assigned using reversible potential calculation. The relative stability of metals as well as the possibility of generating pure fluorine is discussed

    Electrochemical oxidation of binary copper-nickel alloys in cryolite melts

    Get PDF
    Anodic oxidation of copper, nickel and two copper-nickel alloys was studied in cryolite melts at 1000°C. In an oxide-free melt, anodic dissolution of each material was observed, and the dissolution potential increases with the content of copper. SEM characterization of a Cu55-Ni45 alloy showed that nickel is selectively dissolved according to a de-alloying process. In an alumina-containing melt, a partial passivation occurs at the copper-containing electrodes, at potentials below the oxygen evolution potential. A passive film forms on the copper electrode, while on the nickel electrode no dense oxide layer develops. Copper-nickel alloys were found to form a mixed oxide layer. At higher potentials, the formation of oxygen bubbles on the electrodes results in a degradation of the passive films and a strong corrosion

    Scientific Background for Processing of Aluminum Waste

    No full text

    A Unit-Load Approach for Reliability-Based Design Optimization of Linear Structures under Random Loads and Boundary Conditions

    Get PDF
    The low order Taylor’s series expansion was employed in this study to estimate the reliability indices of the failure criteria for reliability-based design optimization of a linear static structure subjected to random loads and boundary conditions. By taking the advantage of the linear superposition principle, only a few analyses of the structure subjected to unit-loads are needed through the entire optimization process to produce acceptable results. Two structural examples are presented in this study to illustrate the effectiveness of the proposed approach for reliability-based design optimization: one deals with a truss structure subjected to random multiple point constraints, and the other conducts shape design optimization of a plane stress problem subjected to random point loads. Both examples were formulated and solved by the finite element method. The first example used the penalty method to reformulate the multiple point constraints as external loads, while the second example introduced an approach to propagate the uncertainty linearly from the nodal displacement vector to the nodal von Mises stress vector. The final designs obtained from the reliability-based design optimization were validated through Monte Carlo simulation. This validation process was completed with only four unit-load analyses for the first example and two for the second example

    A Finite Element Model of Bipolar Plate Cells

    No full text
    • …
    corecore